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The problem of allocation of defensive resources in nationwide defense
against strategic nuclear attack it examined. Distinctive assumptions
are that defenses are local that attacking weapons directed at each
target arrive sequentially ýrequiring that interceptors be allocated
without knowledge of how many additional attacking weapons will follow),
and that neither side can re-allocate its resources during an attack.

4D Prim-Read deployments aire defined and analyzed in detail. Effects
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of the "Target Defense Principle" that initially defended targets must
remain more attractive than undefended targets (up to the point where
destruction is certain) are investigated. Optimality and non-optimality
properties of Prim-Read deployments are established for the criteria of
target value destroyed and target value destroyed per attacking weapon
committed. Variations on the basic model, numerical examples, comparison
of Prim-Read and proportional deployments, and discussion of physical
implications of the mathematical results are included. (1
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Chapter I

INTRODUCTION

This paper reports the results of a rather lengthy and
detailed investigation of some problems that arise in the defense

of targets by interceptors when attacking weapons arrive at each
target sequentially. For some time there has existed a parti-

cular interceptor deployment, generally known as the Prim-Read
depZoyment, that equalizes the probabilities that each of a

prescribed number p of attacking weapons actually destroys the
target. (See the discussion of related research in Chapter VIII.)

The parameter p is chosen by the defending side. The Prim-Read
deployment has long been suspected to possess (some sort of)
optimality properties for the defending side, but these proper-

ties had never been carefully formulated or rigorously estab-

lished. In this paper we fill both gaps, at least partially.
A number of optimality properties are formulated and shown to
be satisfied, in many cases uniquely, by Prim-Read deployments.

We also present extensive discussions of the physical interpre-
tations and practical implications of our optimality results.

A. THE UNDERLYING PHYSICAL PROBLEM

Let us begin with a discussion of the physical real-world
problem that has motivated essentially all work on Prim-Read
deployments. That problem is the defense of point targets
against attacking ballistic missiles by means of interceptors,

which are missiles (ABMs) themselves. On the national scale,
one is dealing with the defense of a nation's entire population

6 and industrial capacity. Because of the defending side's
jl, limited interceptor resources, it will thus be impossible (in

general) to defend all of the targets. The defending side

7 771
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must choose which targets to defend and, for each defended tar-

get, how to allocate interceptors assigned there among incoming

attacking weapons, all in a manner that attempts to minimize

some measure of target value destroyed. The situation is further

complicated by the defending side's not knowing how the attacking

side will allocate its weapons among the targets and also by the
possibility that the attacking side may be able to discern the

interceptor deployment and may allocate its weapons on the basis

of such knowledge.

Yet another complication arises if attacking weapons arrive

sequentially in time at each target. To each attacking weapon

there must be assigned some of the interceptors deployed at the

target and this assignment must be made without knowledge of

how many additional attacking weapons will follow. Such assign-

ments could therefore be prescribed in advance of any attack and

the defending side may even wish to allow for the possibility of

their being known to the attacking side.

Despite all the difficulties which the structure described
above imposes on the defending side, we shall show that there

exist reasonable and in some cases even optimal deployments

that can be undertaken. Such deployments can (1) minimize the

expected target value destroyed, (2) limit the use which the

attacking side can make of its knowledge of the deployment,

(3) limit the effects of rational actions available to the at-

tacking side, and (4) force the attacking side to choose actions

known to the defending side. That Prim-Read deployments possess

such properties, and in precisely what form, is established in
Chapters III through VII of this paper. Often, it is only Prim-

Read deployments that have these properties.

We have not yet considered in detail what the defending

AT: side's objective should be. In general, that objective should
be to make optimal use of limited interceptor resources acnord-

ing to some measure of target value destroyed. As discussed 0'

below in this Chapter and at some length in Chapters IV, V and

2



VI, we shall deal with two such criteria: target value destroyed

and target value destroyed per attacking weapon committed. At

the moment, however, we wish to consider the defending side's

objective in somewhat more general (albeit vaguer) terms.

Let Vd denote the payoff function, in terms of target value

destroyed, to the attacking side when the defending side imple-

ments the deployment d (a precise definition of a deployment is

unnecessary at this point; cf. Chapter II). For each number i

of attacking weapons, V d(i) is the max'imum expected target valuedI
destroyed by i attacking weapons, where the maximum is over all

allocations of those weapons among thie targets, with the deploy-

ment d held fixed. We propose, as has been proposed elsewhere,

that the deployment d be chosen so that the graph of Vd is of the

form shown in Figure 1. That is, d should be chosen such that

FR
I I
I I

I I* I*
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Vd has the following properties:

.) Vd is continuous, concave and increasing (the latter, of

course, is unavoidable);

2) There is some i* such that Vd is linear on the interval
[0, i] ;

S3) On the interval (i*,i*], Vd is strictly concave.

Although it is not clear yet, the linear portion of Vd represents

attack and destruction of defended targets, while the strictly

concave segment corresponds to destruction of undefended targets.

The reasoning underlying this proposed payoff function

merits more detailed explication, some of which follows here,

and more of which appears in Chapter V and also in Chapter VIII.

In general, the defending side will not possess sufficient

interceptor resources to defend all the targets. If there are
targets of different values (as there will be in moct cases),

then the more valuable targets should be defended and the less

valuable targets must be left undefended. The reason for this

is that the attacking side must never find initially undefended

targets more attractive than defended targets, for otherwise

the defending side's resources are being wasted. Crucial to

this line of argument, and a tenet of many philosophies of

defense, is the idea that the purpose of defending some targets

is to force the attacking side to expend so much of its resources

attacking the defended targets that not all targets can be

attacked. Therefore, the deployment of interceptors at defended
targets must be such that the attacking side will commit enough

attacking weapons to destroy all the defended targets be.fore it

attacks any of the undefended targets. This is the target

defenes prinoipZe upon which many of our results rest.

In Figure 1, i* is the number of attacking weapons neces-
sary to destroy all the defended targets, and i** is the number

of attacking weapons needed to destroy all the targets. To the

4I



right of 1**, the payoff function is constant. Between i* and

i** the payoff function is strictly concave. However, we have

not yet justified linearity of Vd on the interval [0,1i], which

corresponds to destruction of the defended targets.

To make that justification, we begin with two observations.

1) Regardless of precisely which targets are defended, they

must be defended in such a manner that the slope, s, of Vd Just

to the right of i*, which corresponds to the point at which unde-

fended targets are first attacked, be less than or equal to

the slope of Vd everywhere on [0,1i]. This is a consequence of

the tenet that defended targets must always remain, even account-

ing for possible prior destruction, more attractive than unde-

fended targets, up to the point where all defended targets are

destroyed. In particular, therefore,

Vd(i*) > i's.

2) The value of i# determines Vd(i*), which is simply the

total value of the defended targets.

The restrictions engendered by these observations are

depicted graphically in Figure 2. Because of the slope require-

ment, on CO,i] the payoff function must lie everywhere above

the dotted line, which has slope s, in Figure 2. Moreover, if

the graph of Vd ever intersects the dashed line, which extends

the graph of Vd backward from i* to 0 with slope s, it must

remain along this line up to the point i*. The payoff function

must then be of general form shown in Figure 3.

There are (at least) three ways to force linearity of Vd

on [£,0*], which we now discuss.

l) If

Vd(i*) - is,

5
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which would essentially always be the case were it not for dis-

-V creteness difficulties (targets are discrete in our model and

nearly discrete, at least, in reality), then the dotted and
dashed lines in Figure 2 coincide, which entails a payoff

function of the form shown in Figure 1, whose derivative is
continuous at i*.

2) With i* and hence s and Vd(i*) determined, the defending

side should seek to minimize the maximum slope of the payoff
function Vd on the interval [0,1*]. The rationale for this goal

is that by doing so the defending side limits the maximum effec-

tiveness of any single attacking weapon. To realize this goal,

the defending side, in view of the limitations represented in
Figure 2, should choose the deployment d in such a manner that

Vd is linear on [0,01. When this is done, the slope of Vd on

[O,i*] will be
Vd (i* )

s# - I ....i'

In general, it will then be the case that s* > s, which is con-
sistent with the previously discussed principle that defended
targets always be more attractive than undefended targets.
Consequently, the derivative of Vd will be discontinuous at.

i*, but will remain decreasing, preserving concavity.

3) Also with i* previously specified, the defended targets

should be made equally attractive, attacking weapon by attacking
weapon, to the attacking side; this leads directly to linearity

of Vd on [0,i*], with slope there the s* given above. Arguments

supporting this particular assumption are somewhat vague grounds
of symmetry and uniformity and also analogies to a large number

of decision-making models in which optimal solutions tend to

possess an appropriate (and often obvious) uniformity property;

Any of the three lines of reasoning Just described suffices
to yield a payoff function Vd of the form shown in Figure 1.
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Questions that naturally arise at this point concern possible

optimality of deployments with payoff functions of the given

form and implications of optimality results for the decision-

making processes of both sides and on the underlying problem of

interceptor defense of point targets. It is such questions that

are addressed in this paper. Deployments with payoff functions

of the form shown in Figure 1, when more carefully defined,

will be called Prim-Read depZoymenta. Our principal mathe-

matical results establish that Prim-Read deployments possess a

number of (theoretical) optimality properties; ensuing discus-

sions attempt to clarify and illuminate important practical

consequences of the optimality properties. In many cases, we

are able to demonstrate that Prim-Read deployments uniquely
possess certain optimality properties. Finally, nonoptimality

of Prim-Read deployments in some situations of interest is also

demonstrated.

In terms of the.mathematical model to be presented in the

next Section, an absolutely essential feature is our assumption

that attacking weapons directed at each target arrive there

sequentially in time. For the underlying physical problem intro-

duced •at the beginning of this Section, this is a plausible

assumption because the attacking side will not wish to reveal

its allocation of weapons earlier than necessary; otherwise the

defending side could possibly alter its interceptor assignments

and decrease the target value destroyed. Consequently, it is

nonoptimal for the attacking side not to have attacking missiles

allocated to each target arrive there sequentially. Of course,

"sequential" is a relative term; the absolute time scale of the

attack may still'be short.

B. MATHEMATICAL ASSUMPTIONS

We now present the mathematical model to be analyzed in

this paper. The prototypical physical situation we wish to con- 0

sider is that of the defense of a nation's centers of population

and production against attack by incoming ballistic missiles,
8



using interceptors that are presumably (but not necessarily)

missiles themselves. Other potential applications of the model

will be discussed briefly in Section D of this Chapter.

Some essential physical properties of the prc totypical

process to be studied are the following:

1) Attacking weapons arrive in the vicinity of each target

sequentially in time.

2) A certain number of interceptors (possibly zero) must be
L. deployed against each attacking weapon as it arrives in the tar-

get vicinity, in order to attempt to destroy the attacking weapon

before it reaches the target. This number must be chosen without

knowledge of how many more attacking weapons might arrive later;

once assigned, interceptors are irrevocably committed and cannot

be reassigned even if the target is destroyed before intended

engagements can take place.

3) The numbers of interceptors deployed against various

attacking weapons need not be equal.

4) Each interceptor can be deployed against only (at most)

one attacking weapon. If it fails to engage or destroy the

attacking weapon, it is of no further use.

5) When several interceptors are deployed against a single
attacking weapon, the resultant engagement consists of indepen-

dent one-on-one engagements, one for each interceptor. If the

attacking weapon is destroyed by one interceptor, the other

interceptors are rendered useless and cannot be redeployed.

6) When there are multiple targets, each interceptor must

be assigned in advance to defense of some particular target.

Interceptors cannot be shifted from target to target as an

attack progresses.

The model with which most of this paper deals will incor-

Ž porate not only these assumptions but also some additional

assumptions. In Chapter VII we discuss ways whereby certain

9
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of the hypotheses can be weakened. Additional assumptions will

incorporate into the model the following effects: (

1) There is a central detection system (whether a single

system for all targets or separate systems for individual tar-
gets is immaterial) that warns of the approach of each attack-

Ing weapon, whereupon the interceptors assigned to it are

activated against it. All attacking weapons are detected.

2) The defending side is able to discarn with certainty

the intended target of each attacking weapon. Against each

weapon only interceptors assigned to its intended target can

be deployed.

3) Neither side has the capability to adaptively reassign

its resources during the course of an attack. Attacking weapons

allocated to a target that has been destroyed cannot be retar-

getted, and interceptors assigned to the target cannot be

redeployed at some other target.

4) An unintercepted attacking weapon destroys with cer-

tainty the target at which it is directed. Only one penetration

is required to destroy each target.

We will discuss below the plausibility and physical inter-
pretations of the assumptions, but to give that discussion suffi-
cient focus and specificity, we first state those assumptions,

beginning with the single target case.

(1.1) ASSUMPTIONS. a) Attacking weapons arrive at the target

sequentially, one at a time, with sufficient time between succes-

sive arrivals that interactions involving different attacking

weapons do not overlap in time.

b) The defending side decides in advance the number of

interceptors that will be deployed against the ith attacking

weapon to arrive, i - 1,2, ... , provided that such an attack-

ing weapon be in fact committed. Interceptors designated

for deployment against attac)king weapons that do not arrive

10



cannot (within the framework of the process under immediate con-

sideration) be used for other purposes. (The knowledge that may

be available to the defending side when this decision is taken

will be discussed below.)

c) Each interceptor can be deployed against (at most) one

attacking weapon, which it engages and destroys with probability

1 - q, where 0 < q < 1. Different interceptors assigned to a

given attacking weapon are (probabilistically) independent.

d) An attacking weapon that is not intercepted destroys the

target with probability one.

e) Interactions involving different attacking weapons are

mutually independent. 0

Consequently, an attacking weapon against which there are

deployed'd interceptors penetrates the defense and destroys the

target oith probability qd

P{penetration and target destructionid interceptorsl a q ,

and is intercepted and itself destroyed--without any harm done
dto the target--with the complementary probability 1 - q

For the multiple target case, the hypotheses are analogous

but slightly more complicated.

(1.2) ASSUMPTIONS. a) The targets are separated to the

extent that each attacking weapon must be directed at only one

target and each interceptor must be assigned in advance to defense

of a single target. The attacking side has no shoot-look-shoot
rV capability to redirect attacking weapons during the course of an

attack, while the defending side is unable to reassign intercep-

tors from one target to another.

b) Attacking weapons directed at each target arrive sequen-

tially in time with sufficient gaps that interactions involving

different attacking weapons do not overlap in time. Whether and111



how interactions at different targets coincide or overlap in

time are immaterial. u

c) The defending side decides in advance the number of

interceptors to deploy against the ith attacking weapon to arrive

at each target, provided that it actually arrive.

d) Each interceptor must be assigned to a single target for

deployment against at most one attacking weapon. The probability

that an interceptor engages and destroys an attacking weapon

against which it is deployed is 1 - q, where 0 < q < 1. Differ-

ent interceptors deployed against a given attacking weapon are

independent. The probability q is the same for all targets,

interceptors and attacking aeapons.

e) An unintercepted attacking weapon destroys with proba-

bility one the target at which it is directed. There is no

collateral damage.

T) Interactions involving different attacking weapons at each

given target are mutually independent.

g) The entire interception/target destruction processes at

different targets are mutually independent.

C. DISCUSSION OF THE ASSUMPTIONS

The assumptions are restrictive in physical terms in order

that we obtain a specific and tractable mathematical model.

While this paper does not contain detailed consideration of

possible applicability of the model, we do treat that question

in slightly more detail below. In Chapter VII we discuss ways

of relaxing some of the assumptions.

Others of the assumptions, however, are for our purposes

immutable. These are the assumptions of sequential arrivals of

attacking weapons, and of preassigned targets to defend and
attacking weapons to be deployed against for interceptors. The

extent to which these hypotheses are plausible depends not only

12



on the time and geography of the physical process under study
but also on the knowledge available to the attacking and defend-

ing sides. Since this is a, fairly important point, especially

in the context of the min-max optimality properties discussed

in Chapters V and VI (and also elsewhere in this paper), we

wish to consider it in somewhat more detail.

In terms of the attacking side, Assumption (l.2a) does not

allow representation of shoot-look-shoot processes, i.e., the

attacking side cannot during the course of an attack make use of

any information it may acquire about which targets have already

been destroyed. If such information were usable, the attacking

side could adaptively reassign its weapons to undestroyed tar-

gets. If the length of the attack is sufficiently short or the

targets are sufficiently far away from the attacking weapons or

the cost and effort necessary to re-target attacking weapons

are sufficiently great, this assumption will not be unreasonable.

Whether the attacking side has knowledge of the defensive

deployment to be followed by the defending side is not yet speci-

fied. The defending side, however, will often wish to protect

itself against this possibility. It will be shown below that

Prim-Read deployments have the property that the attacking side

can make only minimal use of such information; of. Theorems

(4.7), (4.8) and (4.10) for specific manifestations of this

lack of ability of the attacking side to use its knowledge of

the defending side's choice of deployment.

Especially if the attacking Oide knows the interceptor

deployment, it is plausible to assume that attacking weapons

are pre-targetted. However, the assumption that a pre-attack

allocation cannot be changed during the attack still remains

both in effect and open to question.

To the author, it is initially more difficult to accept thek ' assumption that the defending side must in advance assign each

interceptor not only to a target but also to a specific--but

13



C.

hypothetical--attacking weapon directed at that target. This may

lead to interceptors being designated for use against attacking

weapons that are never launched against the target and thus, in

effect, being wasted. One consequence of this "waste" may be

seen in Theorem (6.13). However, the extent to which there really

is waste depends on the knowledge available to the defending side;,

if there is, as we assume, incomplete knowledge a priori, the (

waste may exist only ex post facto, and may therefore be unpre-

ventable.

Moreover, sequential arrival of attacking weapons at each

target not only can be brought about by the attacking side (by

means of its launch procedures) but also is desirable to the

attacking side because this procedure maximally delays full

revelation of the allocation of attacking weapons to targets.

If the defending side believes that the attacking side will so

act (or if the defending side at least wishes to protect against

the possibility), it is then forced to make advance assignments

in the manner assumed above.

In the situation to which we envision the model as applica-

ble, the defending side does indeed possess relatively less

information than the attacking side. At most, the defending

side knows the total stockpile of available attacking weapons,

but never knows the targets to which those attacking weapons are

assigned, except to the extent that its own deployment can force

an attacking side assumed to use certain specific decision rules

to make particular allocations. It is even possible that the

defending side does not know the size of the attacking side's

stockpile. Many of our results are valid in either case.

That there should exist asymmetry in the information avail-

able to the two sides about each other's resource assignments

is not unreasonable physically. Interceptors must be located

near to the targets they are assigned to defend, while attack-
ing weapons may be directed at specific targets by navigational

"means and not by the initial position of the attacking weapons.

14



While it is possibly unrealistic to assume that the attacking

side know how many interceptors are assigned to each (potential)

incoming weapon at each target, it is extremely interesting

that--as we. show in Chapter V--there are defensive deployments

that minimize target destruction even if this knowledge were

available to the attacking side.

Most of the other assumptions are fairly straightforward.

Independence of interactions involving different targets or

different attacking weapons seems quite plausible. The simplis-

tic attrition structure, which decomposes an attacking weapon/

interceptors interaction into independent one-on-one interactions,

may be less plausible in some circumstances. However, this is

"one assumption that we are able to relax; of. Chapter VII. The

assumption that an unintercepted attacking weapon destroys the

target at which it is directed can also be weakened, but this

requires a re-interpretation of the idea of the "price" imposed

by a deployment, as defined in Chapter II. In view of the impli-

cations of the assumption of preassigned interceptors in regard

to target separation, the assumption of no collateral damage is

entirely natural.

When there is more than one target, the targets must be

assigned values in order that the defending side be able to

choose which of them to defend, and how to deploy interceptors

at defended targets. The mathematical results we derive below

involve (expected) target value destroyed when the attacking

side optimizes its allocation of weapons against a given defen-

sive deployment. To do so in practice, the attacking side would

need to know the values of the various targets, which may be

fairly clear in some cases (e.g., centers of population) but

less clear in others (e.g., industrial centers of different

kinds). We assume that either the attacking side does possess

fairly accurate estimates of target values or that the defending

side wishes to guard against this possibility. In regard to

Prim-Read deployments this will be seen not to be restrictive,

15



since a Prim-Read deployment, in effect, reveals the (relative)

values of at least the defended targets.

As explained and explored in more detail in the Chapters

below, the defending side's goal is taken to be to make optimal

use--according to a criterion that must be specified--of its

limited interceptor resources. Two principal optimality criteria ,

will be considered in this paper, each of which the defending

side will attempt to minimize:

1) Expected target value destroyed by an allocation of

attacking weapons that is optimized against the chosen

deployment.

2) Expected target value destroyed per attacking weapon

committed, with the allocation of attacking weapons

optimized against the chosen deployment.

The physical interpretation is that the defending side chooses

its deployment (which assigns both interceptors to targets and

interceptors at each target to sequentially arriving attacking

weapons) and the attacking side then allocates its weapons, with

knowledge of the deployment, so as to maximize either target

value destroyed or target value destroyed per attacking weapon

committed. The defending side seeks to minimize this maximum.

The principal results of this paper show that Prim-Read

deployments are essentially always optimal for the second cri-

terion and are optimal for the first criterion provided that

one assume that the target defense principle stated above be

satisfied and that the attack size be less than is required

to destroy all the defended targets. Recall that the target

defense principle states that targets should be defended in

order of decreasing value in such a manner that no defended

target is ever less attractive than an undefended target, even

when one accounts for the possibility that previous attacking

weapons may have destroyed the defended target. 0

16
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It will further be seen that Prim-Read deployments achieve

certain goals that are of secondary importance, but nice to

achieve nonetheless. Among these are specifying the commitment

of attacking weapons required to destroy the defended targets,

limiting the number of actions that might be undertaken by the

attacking side and in general limiting effects of the uncertainty

and lack of information imposed on the defending side by the

fundamental asymmetry of the choice problem we treat.

Whichever criterion is established by the defending side,

it will be necessary in general to leave each target defenseless

after a certain number of attacking weapons have been directed

at it. Possibly not all targets can be defended. The defending

side must therefore choose, for each target,

1) the number of attacking weapons against which the

target will be defended (possibly zero);

2) the number of interceptors to be assigned to each

attacking weapon against which the target is defended.

This is the choice problem with which this paper is concerned.

Under the target attrition model defined by (l.lc) or (1.2d),

commitment of one more attacking weapon than the number of attack-

ing weapons defended against assures destruction of the target

(since q < 1, no smaller commitment assures destruction). The

effect is to specify a "price" for each target: the minimum

commitment of attacking weapons by which destruction of the tar-

get is certain. By deploying interceptors in such a manner that

the attacking side--under the assumption that it use certain

forms of decision rules--will pay the full price of each defended

target, the defending side thereby gains control (despite its hav-

ing to choose first) of the attacking side's resource allocation.

0. POTENTIAL APPLICABILITY OF THE MODEL

Although this paper contains no detailed analyses of possible

applicability of the model to specific physical combat processes,

17
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we do wish to discuss briefly and in a fairly general manner

the kind of situations it might be used to represent. As

previously noted, this naper is motivated by and directed

primarily toward defense of national population and production

resources against a strategic nuclear attack. We have discussed 1

several of the assumptions in the context of this particular

application and concluded that the assumptions were at least

plausible and in many cases rather reasonable. We believe,

therefore, that our results are applicable and are of some

importance to the problem that motivated this research.

"However, it is possible, that the model may be applicable

to other, and perhaps smaller scale, situations. Those situa-

tions, it seems to the author, must, like the prototypical

missile/ABM problem, involve defense of point targets by inter-

ceptors. That defense must in some sense be a barrier through

which attacking weapons attempt to penetrate; destruction of the

barrier is not important and not necessarily attempted. However,

the attacking side may attempt to "exhaust" the barrier by com-

mitting enough weapons to force deployment of all the intercep-

tors. The crucial aspects tre that each interceptor be deployed

against exactly one (or, more accurately, not more than one)

attacking weapon and, of course, that attacking weapons arrive

sequentially at the barrier.

An alterniative model of barrier penetration processes

appears in El), to which the reader is referred for comparison.

To consider a concrete situation, let us examine defense of

an aircraft carrier task force by aircraft stationed on the

carrier. The carrier is the target. Against an attack by enemy

aircraft, the interceptors might be deployed on paorol. If we

assume that there is also present an efficient central detection

system, such as AWACS, then detection of all penetrators seems

reasonable. Not so reasonable is the assumption that penetrators

(enemy aircraft) arrive sequentially in time. Presumably the

18



enemy might attempt to saturate and confuse the defense by

attempting many penetrations simultaneously. Hence if the model

were used in this situation, it should be with the explicit

understanding that its hypotheses are only imperfectly satisfied.

If penetrations are attempted over a sufficiently short period

of time, it is plausible that each interceptor can be involved

in only one attempted engagement. Destruction of the target by

a successful penetrator is not certain, but we indicate in

Chapter VII how to weaken this assumption.

In the same context, the model might be applied to close-

in defense of the carrier by surface-to-air missiles launched

from the associated escort ships. As in the preceding example,

the greatest difficulty is with the assumption that penetrators

arrive sequentially in time; the other assumptions seem rela-

tively plausible.

Much the same analysis might apply to defense of an air
base against an attack by enemy aircraft, using either aircraft

or surface-to-air missiles. Once again, the troublesome assump-

tion is that of sequential arrivals of attacking weapons. The

assumption concerning "unreusability" of interceptors seems
better satisfied when interceptors are SAMs than when inter-

ceptors are aircraft.

It is difficult to Justify applicability of the model to
any process in ground combat; the author (though his knowledge

is limited) is unable to find a ground combat process for which

the assumptions of the model are less than patently untrue.

Nonetheless, the previously noted tenet that one aspect of a

defense is to force a known--and also possibly unacceptably

large--commitment of the attacking side's resources if the

attack is undertaken at all beems very important to us. Its

consequences in other combat situations need to be explored.

C
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E. STRUCTURE OF THE PAPER

In order to improve accessibility of the paper to readers

without advanced mathematical training or without interest in

detailed derivations of our results, we have attempted to provide

sufficient summary information so that the content and interpre-
tations of the principal results are understandable without a

line-by-line reading of the paper. To this end, we have pro-
vided a summary at the end of each Chapter that describes the
important results of that Chapter in both mathematical and

physical terms, but not in full detail. Therefore, a substantial

understanding of the paper could be obtained by reading:

1) Chapter I;
2) The summaries of Chapters II, III, and IV;
3) The general discussion in Chapter V, Section A and the

summary of Chapter V;

4) The summaries of Chapters VI and VII;

5) Chapter VIII.

Both the Chapter summaries and Chapter VIII list by number
the principal mathematical results so that they may be located

easily for further details.

We emphasize, however, that the "substantial understanding"
noted above is only a minimal substantial understanding. Many
examples, illustrations and discussions of practical consequence

appear in the body of the paper and would be missed in a partial
reading. We urge the reader who has background and interest to
read the entire paper, or at least Chapter V.

As for specific content, Chapter II contains derivations
of Prim-Read deployments from uniformity hypotheses on expected

target values destroyed by various attacking weapons, and also

introduces a number of important concepts, the most important
being that of the target prices imposed by a deployment. In

Chapter III we present optimality properties of Prim-Read
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deployments in the single target ease. Although this case is

perhaps of relatively little intrinsic interest, the results

and derivations presented there serve as useful motivations

for the more complicated results appearing later in the paper.

Chapter IV develops optimality properties in the multiple target

case, but under the assumption that either all targets are
defended or only targets of unit value are left undefended. The

mathematical and practical heart of the paper, we believe, is

Chapter V, in which we treat optimality properties of Prim-

Read developments when many targets must be left undefended

and when the target defense principle is assumed to hold. In
these circumstances, the Prim-Read deployment is shown to be

the unique solution to several optimization problems, each of

which is of clear practical importance. We also show that there

are important problems to which Prim-Read deployments are not

optimal solutions. Chapter V also contains a discussion•,

extending that of Chapter I, Section A, of desirable properties

of payoff functions and ways of attaining them. Some additional

optimality results complementary to those in Chapters IV and V

are given in Chapter VI. Finally, in Chapter VII we obtain the

form of Prim-Read deployments under hypotheses weaker than those

given in (1.1) and (1.2); we allow inclusion of target-dependent

intercept probabilities, unreliable attacking weapons, and alter-

native attrition structures. The entire paper is summarized in
Chapter VIII, where we also discuss related literature and some

aspects of the problem (which do exist) that are not treated here.

An Index of Notation is given following the referennes. Appendix

A contains numerical examples and Appendix B contains some addi-
Lional results comparing Prim-Read and proportional deployments.

We believe that this paper presents a clear and compre-
hensive analysis of the strengths and weaknesses of Prim-Read

deployments, and believe that it contributes to understanding

of the underlying defense problem.

21
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CHAPTER 11

DERIVATION OF THE PRIM-READ DEPLOYMENTS

In this Chapter we derive the interceptor allocation and

requirement for Prim-Read defensive deployments, first for a

single target and then for multiple targets. The reader will

observe that the Prim-Read deployments equalize the expected

target values destroyed by various attacking weapons and might

then conjecture (by analogy wtth various other game-theoretic

allocation problems) that this "equal risk" deployment possesses

certain optimality properties. Those properties constitute the

subject of Chapters III, IV, V, and VI.

A. SINGLE TARGET CASE

Let us first consider the single target case. An important

idea in the Prim-Read defense strategy is that of the "price" of

a target, which is a function of the chosen deployment. The
price of the target is the minimum number of weapons that must be

expended by the attacking side to be certain that the target is

destroyed. After introducing some notation, we shall give the

precise definition.

A depZoyment is specified by a vector d, where

d(i) = number of interceptors allocated to attempt to

destroy the ith attacking weapon.

C- A deployment for the defending side consists of choices d(l),
d(2),... that define an interceptor allocation. We explicitly

permit the d(i) to have non-integer values.

(2.1) DEFINITION. The price imposed on the attacking side by

a deployment d - (d(i)) is

23



p(d) - min{i:d(i) 0 o}

In view of the Assumptions (1.1), the attacking side can

be certain of destroying the target by launching against it an

attack of size equal to the price, and would, provided it knew

the price, never commit more weapons. To impose a price p the

defending side need only deploy (p-1) interceptors in the

deployment

(2.2) d(i) - l, _ _ý.-l

0, iLp.

This is true provided we require that d(i) > 1 whenever d(l) > 0,

a property not satisfied by Prim-Read deployments.

Given a deployment d, let

(2.3) p'(d,i) -'P{target is destroyed by attacking weapon i}

= []. (1 Qd()) qd(i)

pid)
Evidently p(d,i) - 0 for i > pd); i.e., p(di) 1.

i-i

EXAMPLE. Let d be the deployment given by (2.2). Then

p(di) - (l-q) i-q q

for i - 1, ... , p - 1, while

p-i i.

p(d,p) - 1 - q P (l-q) • I

i-i

m(1-q)
1

C)
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Much of our attention in this paper focusses on deployments

A d that equalize the probabilities p(d,l),...,p(dp(d)); these
will be called Prim-Read deployments.

(2.4) DEFINITION. A deployment d* is a Prim-Read depZoyment If
1

(2.5) p(d*,i) -

for i - 1, ... , p(d*).

The following Theorem verifies that Prim-Read deployments

exist and also provides their explicit form.

(2.6) THEOREM. For each integer p > 1 there exists a Prim-

Read deployment d* such that

p(d*) p p ;

the deployment d* is given by

(2.7) d'(i) - log(P-i+l)
log q

for i 1 1, ... , p.

PROOF. In order to satisfy

p(d*,i) - 1 "

for each i, we must have, first of all,

d*(1)
" p(d*,l) - q

p

which is equivalent to

d*(l) log q -log p

" - log p

or

d*(l) ,•,,.-log q

S( 7

S*'... .. ._ _. .. . , . :



which is expression (2.7) for i - 1. Suppose now that (2.7)

holds for i , ... , k - 1; then

- p(d*,k)p

k [1_. 1 qd*(I))]q d#(k)

*[k- (1 d*(k)

(by the induction hypothesis)

S- k + 1 d*(k)qSP

Therefore,

qd* (k)
p- k +1

which is the same az

d*(k) - - log(p - k + 1)'* k log q

verifying (2.7) for i K k • a
(2.8) COROLLARY. The Prim-Read interceptor requirement is

given by

I(d*) - - log pl/log q

26
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In order to aid the reader in understanding this require-
ment we present the following Table of Prim-Read interceptor

requirements for the case q a .50.

Table 1. PRIM-READ INTERCEPTOR
REQUIREMENTS

pp(d*) I(d*)

1 0

2 1.00

3 2.58

4 4.58

5 6.91

6 9.49
P. p+•)1o0 9 P-
L. og q

The asymptotic expression for p * * is obtained using
Stirling's approximation for pl [16, p.194] and drops a

1constant term of 7 log 21.

Because, as evidenced by Table 1, the Prim-Read deployment
need not require integral numbers of interceptors, the results
there may be slightly misleading as well as impossible to

implement physically. The following example illustrates.

(2.9) EXAMPLE. Let q a .50. For p - 5 we then have

d*(l) w 2.32

d*(2) - 2.00

"• d*(3) - 1.58
d*(4) - 1.oo
Vd(5) a 0

The integral interceptor requirement is therefore

I (d*) - 8
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In most of our discussion below, we simply ignore such
"discreteness" problems, despite their obvious physical impor-

tance. For values df'q (the penetration probability) and p that

are moderately large, the errors are probably not substantial.

The rationale for choice of a deployment satisfying (2.5)

is not entirely clear, although the results presented in

Chapters III through VI provide some clarification. One can

argue heuristically that (2.5) might be desirable because it

imposes an ineffectiveness of choice on the attacking side.

That is, if the Prim-Read deployment is implemented and the

attacking side is to choose the number of weapons with which to

attack the target, no one weapon has greater marginal effect

than any other. The precise result of this "ineffectiveness V

of choice" is described by Theorem (4.1o).

For one target, other than choosing the deployment and

thereby defining the target price, the defending side has no

choices to make. If there are many targets to be defended, more

choices are required, but before considering that situation, we

consider one additional aspect of the single target case.

In the previous discussion it was assumed that the defend-

ing side first chose a deployment, based on which it computed

an interceptor requirement. In reality, however, the available

number of interceptors may be fixed in advance, say at I0. The

defending side could then implement a Prim-Read deployment d*

as follows: Let p be the largest integer p for which

(2.10) - log Ui/log q 1

Then implement the Prim-Read deployment with price p. If

equality does not hold for V - p in (2.10), then the above stra-

tegy does not utilize all available resources. The remaining

interceptors, however, can clearly be distributed in such a

manner that (2.5) remains nearly satisfied. In light of
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Theorem (2.6) the defending side could, for example, make a

choice such that

1

but

p(d*,p) >

In this case, if the target were attacked at ali and if the
resources were available, the attacking side would expend the

full price necessary to destroy the target in order to obtain

the marginal return p(d*,p) of the final weapon, which exceeds

those of the earlier weapons. See also Theorem (3.1), which

further considers the effect of increasing marginal returns.

B. MULTIPLE TARGET CASE

We now consider the more important, multiple target case.

Suppose that there are targets numbered 1, ... , T with integer

values v(l), ... , v(T), respectively, the latter according to

some scalar measure of target value. An interceptor deployment

is then specified by a matrix d - (d(j,i)), where

d(j,i) a number of interceptors deployed at target J
against the ith attacking weapon (if there
is one) directed at that target.

The pr•oe vector for a deployment d is the vector p(d) *

(p(d,l),...,p(d,T)) defined by

p(d,J) - min{i:d(j,i) 0 O}

Observe that while the deployment d defines the price vector

p(d), it nonetheless makes sense to speak of a deployment d

for which p(d) equals a prescribed vector p.

0 The uniformity property (2.5) used in the single target

case can be extended to the multiple target case, up to a
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scaling parameter, in a manner which we now describe. Given a
deployment d, let

thm

p(d,j,i' - P{target J destroyed by ih attacking weapon
directed at it}

[i~l (J,) ]qd(J~i)- 1 (1-qd ) s

recall that the attrition structure is given by (1.2).

By analogy with Definition (2.4) we introduce the following

terminology.

(2.11) DEFINITION. Let k be a positive integer. A deployment

d* is said to be a Prim-Read depoyme.nt with 8oaZing factor k
provided that

(2.12) v(j)p(d*,J,i) -

for all J - 1, ... , T and i - 1, ... , p(d*,J).

The content of (2.12) is that the expected target value

destroyed by each attacking weapon is the same (namely, is

equal to 1/k) up to the point at which all targets are destroyed.

While the analogy of (2.12) to (2.5) is rather strong to begin
with, it is strengthened by the following result.

(2.13) THEOREM. For each integer k there exists a unique Prim-

Read deployment d* with scaling factor k. The deployment d* is

given by

(2.14) d*(Ji) - log(kv(J)-i+l)

log q

for J - 1, ... , T and i - 1, ... , kv(J).

Before proving the Theorem, we take note of the following

consequences of it.
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(2.15) COROLLARY. If d* is the Prim-Read deployment with

scaling factor k then

(2.16) p(d*,J) - kv(j)

for j * 1, ... , T.

(2.17) COROLLARY. The Prim-Read interceptor requirement is

I(d*) T log(;kv(J)] I)
-1. log q

The expression (2.16) states that for a Prim-Read deploy-

ment d*, target prices are proportional to target values, and

this--as we shall see in more detail below--leads the attacking

side to distribute its weapons among the targets in proportion

to their respective values. However, as (2.14) shows, the

defending side does not distribute its interceptor resources

among the targets in direct proportion to their values (except

in the special case when all targets have the same value).

We now prove Theorem (2.13).

PROOF of THEOREM (2.13). Consider some target J. In order

that

v(j)p(d*,J,l) -

we must have

d*(J,l) * 1

which is equivalent to

d'(J,1) * - okvj)•:. " lo'g q "

Proceeding as in the proof of Theorem (2.6), suppose that

,31
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dN(J,•) - - los(kv(J)-Z+l)
log q

for 9 - 1, ... , 1 - 2. Then (2.12) implies that

- v(j)p(d*,J,i)

- v(J )[ (1-qd*(' ~)]qdW.

-W v~ kv(J) - i + 1 d*(',i)
kv(jv) q

which in turn implies that

d*(J,i) -

q kv(J)- i + 1

and hence that

d*(Ji) • log(kv(J)-i+l)
log q

Since J was arbitrary, the proof is complete.

REMARKS. There are two distinct ways in which one can
envision the defending side choosing the scaling factor k,

given that it has chosen to have a deployment of Prim-Read

form. First, its interceptor resources may be fixed at some

level, say I0. The maximum parameter k such that

I(d*) < I10

would be chosen and the remaining interceptors either diverted

to other uses or allocated among the targets according to some ,

(more or less arbitrary) scheme. See also Chapter V.

Second, it might be the case that the defending side knows

the maximum number of attacking weapons that could ever be

launched against the targets in question. For example, the
number of attacking weapons might be fixed by negotiated
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agreement between the two sides, as is done with strategic

nuclear weapons. The defending side might then wish to con-

struct a deployment sufficiently strong that, in order to

destroy all the targets, the attacking side would have to

commit its entire stock of weapons. This would lead to the

defending side's choosing the minimal value of k for which

the total of the target prices exceeds the number of weapons

available to the attacking side. An interceptor requirement

could then be deterumined.

We obscrve once more that (2.12) above .auffices to imply

that target prices be proportional to target values. When

k a 1, targets of unit value are left undefended, but in

reality the defending side will be forced to leave many tar-

gets--usually of differing values and some of values greater

than one--undefended. In Chapter V we consider in detail this

important problem of undefended targets. Chapters III and IV

are devoted to exploring mathematical optimality properties of

the Prim-Read deployments and to understanding the practical

implications of such properties.

C. CHAPTER SUMMARY

In this Chapter we have defined Prim-Read deployments as

satisfying certain uniformity properties, namely (2.5) in the

single target case and (2.12) in the multiple target case. The

former equalizes the probabilities of target destruction for

all attacking weapons against which there is a. defense with

that of the first against which there is no defense. The

latter equalizes ex:pected target values destroyed for all

attacking weapons that are defended against and those or the

first attacking weapon at each target that Is not defended

against. The important concepts of the price of a single

target defense and the price vector of a multiple target

defense are also introduced in this Chapter.
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The main results of this Chapter are the following:

1) Theorem (2.6), which gives the form of a Prim-Read
deployment d* in the single target case:

d*(i) - log(p(d*)-i+l)
log q

The associated interceptor requirement is calculated in
Corollary (2.8) and found to be

I(d*) - log(p(d*)I)
log q

2) Theorem (2.13), which gives the form of Prim-Read
deployments for the multiple target case. If k is the scaling
factor, so that the equalization condition is

v(j)p(d*,J,i) - J -Jl,...,T ;

i_ iml,.., ,p(d*,J),

then

d*(J,i) - - log(kv(j)-i+l)

log q

also for J = I,..., T and i 1 1, ... , p(d*,J) - kv(j). The
interceptor requirement is

T
I(d*) Y- -- I logr(kv(j))!]log q Jil

These results are Corollaries (2.15) and (2.17), respectively.
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Chapter III

OPTIMALITY PROPERTIES: SINGLE TARGET CASE

A. INTRODUCTION

This Chapter considers some ways in which the Prim-Read
deployment represents an optimal use of the interceptor
resources of the defending side. To motivate the more compli-

cated results concerning the multiple target case (presented
in the next two Chapters) we first present here some results
concerni:ng the single target case. In both cases (as the

reader will observe throughout this Chapter and the next two)
one must formulate optimality questions with care and in the
correct context. The results of this Chapter are of relatively

less intrinsic interest than those of Chapter IV and, especi-
ally, Chapter V, and might perhaps best be viewed as a means
of motivation and introduction to the ideas and machematics

used in the sequel.

Let the defending side be protecting a single target.
Throughout this Cbapter we use the following notation: if d

is a deployment,

a) p(d) - min{i:d(i)=0} is the price imposed by d. With-
out loss of generality (because attacking weapons are perfect)
we assume that d(t) a 0 for all . > p(d).

b) p(ai) is the probability that the target is destroyed
by the i attacking weapon directed at it; cf. (2.3).

i
c) P(di) p(d,k) is the probability that the target

k-I
is destroyed by one of the first i attacking weapons directed

at it.
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P (d) -1
d) I(d) = d(i) is the interceptor requirement.

i-1

We use d* to dtenote Prim-Read deployments.

For p a positive integer, D(p) denotes the set of deploy-

ments d for which p(d.) - p and if, in addition, a is a positive

number, D(p,a) denotes the set of those d t D(p) for which

1(d) < a. Given p we denote by a*(p) the interceptor require-

ment of the Prlm-Read deployment d* # D(p), namely

a*(p) - - log pi/log q

Finally, let D(p) - D(p,c*(p)). Deployments d # D(p) require

at most as many interceptors as the Prim-Read deployment d*.

B. RESULTS

We now proceed to our first optimality result.

(,,1) THEOREM. If d t D(p) and P(d,*) is convex on

SO,p], then d - d*.

REMARK. Convexity of F means that for each i = 2,...,p 1,

d <_ ½. [P(d,i-l) + P(d,i+l)]

which is equivalent to

(3.2) P(d,i) - P(d,i-l) < P(d,1+l) - P(d,j,)

It follows at once from (2.5) that the Prim-Read deployment d*

satisfies (3.2), in fact with equality for each i.

Implications of (3.2) for the attacking and defending

sides, and its desirability for the defending side, will be

discussed following the proof of the Theorem.

PROOF of THEOREM (3.1). For a given deployment d * D(p) we have
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(3.3) P(d,l) q d(l)

for 1 - 2, ... , p we have

(3.4) P(d,i) - P(d,i-1) = p(di)

= [ l (.q d (1))] q d(i)
Zl1

The constraint

p-i Sd(i) I_ l(d*)
i-1

is equivalent to

p-i d(i) I(d*)(3.5) n q > q
i'l

q -log pl/log q

2. • -

Suppose that d t D(p) and that P(d,.) is convex. For
i - p - 1, the inequality (3.2) becomes

P(d,p) - P(dp-l) > P(d,p-l) - P(d,p-2)

whioh by (3.4) is equivalent to

p-i ~ ))> p2 d dp1S(3.6) n )- > (1-q (i)] q

, I Under the assumption that d(i) > 0 for i < p, (3.6) reduces to

S(lq d(p-i) > qd(o-l)

or

(3-7) qd( ) 1 1
q ~ .2
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Similarly, the requirement

P(d,p-l) - P(d,p-2) > P(d,p-2) - P(d,p-3)

is equivalent to

p-2 d ( i d 1)7 1-3 qd (i) qd (p-2 ),.

and hence to

(i~qd(p- 2 ))qd(p-l) >qd(p-2)

By (3.7), this becomes

q d(p-2) <_ (1-q d(p-2))

which is the same as

qd(p-2) I.
-3

Proceeding inductively, we infer that

(3.8) qd(i) < (p-i+l)-I

for all i whenever P(d,') is convex. The requirements (3.5)
and (3.8) together imply that

qd(i) I
p-i +]

for i - 1, ... , p - 1, which completes the proof.

REMARKS. 1) The convexity property (3.2) is that of

"increasing returns to scale." It ensures that a rational

attacking side with at least p weapons available will--provided

it attacks the target at all--expend the full price p necessary

to destroy the target. This is because each attacking weapon,
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when (3.2) holds, is more valuable to the attacking side, in

terms of expected target value destroyed, than the previous

one. Therefore, if an ith attacking weapon is launched, it

is irrational not to launch an (i+l)st. Theorem (3.1) shows

that no deployment other than the Prim-Read can use the same

number of interceptors and still produce a convex payoff func-

tion on [00p]. When the payoff function is convex, and if the

attacking side seeks to maximize target value destroyed per

attacking weapon committed, it is forced to expend the full

resources needed to destroy the target.

2) By using the Prim-Read deployment the defending side

reduces to two the number of actions that a rational attacking

side would choose, namely, "do not attack the target at all"

and "attack the target and pay the full price," and destroy it.

Thus the defending side, even though it must choose first, is

able to limit the choices available to the attacking side. The

defending side is thereby able to exert control over the attack-

ing side's expenditure of resources. If the attacking side seeks

to maximize either expected target value destroyed or expected

target value destroyed per attacking weapon committed, it will

choose to destroy the target.

3) In the preceding discussion the price p was taken to be

exogenously determined. If a limited number of interceptors is

available, a suitable price may be calculated using (2.10).

Another manifestation of the uniformity of the Prim-Read

dcployment is given in our next Theorem, which deals with a

situation in which the defending side wishes to minimize the

number of interceptors required while controlling the maximum

cumulative damage per attacking weapon. Recall that D(p) is

the set of all deployments with price p.

(3.9) THEOREM. Let p be an integer. Then the Prim-Read
deployment d* uniquely solves the optimization problem
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(3.10) minimize I(d)

S.t. d a D(p)

max P(d~r) <_
l<r<p r -

PROOF. Since (2.7) implies that P(d*,r) - r/p for r - 1, p

the Prim-Read deployment do is a feasible solution to (3.10).

Optimality is suggested, although not proved of course, by the
fact that all constraints are satisfied as equalities.

Suppose now that d is an optimal solution to (3.10). Then
first of all we must have

qa(l)q1 - P(d,l)(

which we write in the fo:[m

pq(1) < 1.

Using this inequality, the fact that qd(*)A I,,'j and the
constraint C

1 ( 1 -qqd(l))( l - qd(2)5 - P(d,2)

< 2/p

We see that
qd(2) < 2 d()

-(lqd(l)

< 2/p - ,d(l)

d-(l)
(1-q

2- d(l)
2 - 1
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which we write as

(po-)qd( 2 ) + pqd(l) < 2

By an inductive continuation of the procedure above we can
conclude that for each i - 1, ... ,p - I the inequality

i •j S(p-J+l)q (j I

J ml

is valid. Note that so far optimality of d has not been used.

If d is optimal, then in addition to the preceding inequali-

ties, 1(d) i I(d*), which is the same as

P-1  d~) P-1  d(
- q > - q

i-l i-l

Together, the previous p - 1 linear inequalities and this one
nonlinear inequality imply that d a d*. For an illustration,

see the proof of Theorem (3.11) below.

hMARKS. 1) Theorems (3.1) and (3.9) are evidently rather

Glooely related to one another; they are nearly, but not quite,

dual optimization problems. See also Theorem (3.11) below.

2) If one supposes that the attacking side, once the

defensive deployment is rchosen and implemented, is able to

discern that deployment and then choose a number of attacking

weapons that maximizes

C P(d,r)
r

over (l,...,p}, then Theorem (3.9) Jtates that by employing the

Prim-Read deployment, if there is a constraint 1/p on the per-

attacking weapon-payoff for the optimal choice of the attacking
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side, the defending side minimizes the requirement for inter-

ceptors.

3) Since

P(d*,r)/r - 1/p

for all r, the Prim-Read deployment does not, according to the

attacking side's criterion of maximizing P(d,r)/r, limit the

number of actions that are then feasible (indeed, optimal) for

the attacking side; it does, however, ensure that all actions

have the same effect. This is yet a different way in which the

Prim-Read deployment limits the decision-making ability of the

attacking side: in this situation no alternatives are precluded,

but all actions lead to the same outcome.

4) The content of Theorem (3.9) is that--for a given target

price--the Prim-Read deployment minimizes the defending side's

interceptor requirement subject to a constraint on the maximum

(cumulative) damage per attacking weapon. Theorem (3.11) below

states that, in effect, the constraint and the objective func-

tion in (3.9) can be interchanged. That is, the Prim-Read

deployment uniquely minimizes the maximum cumulative damage

per attacking weapon, subject to an upper bound on the number
of available interceptors. This result should be compared with

the various results in Chapters IV, V and VI, which treat min--

max optimality properties in the multiple target case.

(3.11) THEOREM. The Prim Read deployment d* is the unique

solution to the optimization problem

(3.12) minimize max P(d,r)

l<r<p r

s.t. d o 5(p)

"PROOF. Feasibility of d* is obvious. If' d e D(p) then

P p
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which obviously implies that

max P(d,r) > 1
mx <r 

->p

- max P(d*,r)

This shows that d* is an optimal solution to (3.12) and that if

d is any other optimal solution, then

(3.13) max P(dr) * 2.
J<r<p r p

To show that d* is in fact the only optimal solution to
(3.12), let a be any optimal solution and define

x j d(i) i - 1, #f., p

The equality (3.13).implies the inequality

j > P(a,l)
p-

q(1) x,

which we rewrite as

(39 J )pxI _< 1.

The inequality

I > P(a,2)
C. P 2

1 [q (1)+ (I._qd(1))qd(2)]

x1 + (1x )x2]
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which also results from (3.13), can be rewritten--with the aid

of (3.14)-- as K)

2> x + (o2z. ,x

and hence as

Px1 + (P-l)x 2 < 2

By continuing this procedure we obtain the following set of

(linear) inequalities (one of which must hold as equality):

Px 1 i5 1

pxI + (p-l)x 2 < 2

Px1 + (p-l)x 2 + (p-2)x 3 1 3

Px1 + (P-l)x 2 + ... + 2xP_1  p - I

Together with the noulinear inequality

p-1

i-l

which is but a rewritten form of the constraint I(d) < l(d*),

the preceding inequalities and optimality of d imply that

X 4 1
il "P-i~l

for each i, i.e., that d * dN.

To illustrate (rather than overwhelm the reader with tech-

nicaJ details) let us consider the case p - 3. The relevant

inequalities are then
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3x, 1

3xI + 2x2 < 2

and

1 X2 ý- ý ;

the only point (xlx 2) satisfying these three inequalities is
(1/3,1/2), which does indeed correspond to d - d*. The higher
dimensional cases are notationally more complicated but con-
ceptually the same. 0

It is important to realize that the Prim-Read deployment
is not a universal solution to every optimization problem
involved with interceptor defense of point targets. The
following discussion shows, however, that for some problems
to which it is not an optimal solution, it is still a reason-
ably good choice.

(3.15) EXAMPLE. The optimization problem we wish to treat
in this case is the following: fix the attacking side's
resources at some integer level p and the defending side's
interceptor resources at

I - - log p1/log q.

These are the levels of resource expenditure for the two sides
when the defending side implements a Prim-Read deployment with
price p. The optimization problem to be considered is

(3.16) minimize max l- (lQ())]

where the maximum is over a < p and the minimum is over all
deployments d for which I(d) < I. The objective function

a d~i)
P(d,a) n 1 - I (1 -qd )

i-1
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is the probability that the target is destroyed (and is hence
directly proportional to the expected target value destroyed) ..

when the defensive deployment is d and the attacking side

commits a attacking weapons. It is assumed in (3.16) that

p and I are known to both sides.

This optimization problem is certainly a natural problem

that one might pose in a target defense problem: the defend-

ing side wants to minimize, and the attacking side to maximize,

the expected target value destroyed. Formulation of (3.16)

as a min-max problem rather than a (simultaneous move) game repre-

sents our assumption that the attacking side can discern the

defending side's deployment before the attack occurs. The princi-

pal difference between the problem (3.15) and those discussed

above in this Chapter (especially in Theorems (3.9) and (3.11) is

that the latter account for the level of expenditure of attacking

weapons by replacing P(d,a) in (3.16) by P(d,a)/a, the expected
target value destroyed per attacking weapon expended.

What we will do is to compare the solution to (3.16) with

the Prim-Read deployment d* with price p which solves (3.12)

above.

The solution to (3.16) may be obtained by the methods of

calculus once some preliminary analysis is used to simplify

the problem. For any d,

max P(d,a) - P(d,p)
aip

so (3.16) reduces to the minimization problem

p ( ll
(3.17) minimize 1 - n (I-qd(i))

ijl

S.t. I(d) < I
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To solve (3.17) we may restrict attention to those d for which

d(i) a 0 for i > P; there is no point in deploying interceptors

against nonexistent attacking weapons. Note that since d*(p)

0 we have

P(d*,p) 0 1

whereas if d is any feasible point for (3.17) such that

d(i) > 0 for i 1 1, ... , p, then

P(dp) < 1

Consequently, the Prim-Read deployment is not an optimal solu-

tion to (3.17).

To find the optimal solution to (3.17) one may use the

classical methods of calculus (either Lagrangemultipliers or

substitution of I - [ d(i) for d(p)). The resultant solution

is the uniform allocation a given by

(3.18) d(i) - i ,..

We observe that at the optimum, the objective function value

for the problem (3.17) is

(3.19) p(d,p) * - [. - (•-j.

We now wish to compare P(d*,p) with P(d,p) in order to

understand to what extent the Prim-Read deployment d* fails to

be an optimal solution to (3.16). Since, as previously noted,

P(d*,p) = 1, to investigate the ratio P(d,p)/P(d*,p) it suf-

fices to consider only the behavior of P(d,p) as given in

(3.19). The behavior we investigate is that of P(d,p) as

. p + •. Using Stirling's approximation
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p! ~ P+1/2e-P

and the fact that
1I p/p 1,

of. [16, P.57], we conclude that

(3.20) lrm .P(sp) - lrm 1 - (1 -t)

- 1-e-e

= .9340 .

The practical significance of (3.20) is that for large values

of p, the Prim-Read deployment is 93 percent optimal in (3.16)

and optimal in (3.12). In fact, the convergence in (3.20) is

extremely fast; F(d,p) > .92 oncep > 20.

On the other hand, let us consider how the solution d to

(3.16) fares as a possible candidate in the problem, (3.12),

to which the Prim-Read deployment d is the optimal solution.

For d as given by (3.18), the cumulative payoff function P(d,S)

to the attacking side is easily seen to be strictly concave on

[0,p], i.e., is of the form of the payoff function given in

Figure 4a (Chapter V). Consequently

P(dr)max r ,, P<d,1)

r< p

()1/p

kPIIr• = I-7.) 4 l



Once again using Stirling's approximation, one can see that

(3.21) max P(der) e

r<p r P

Since

max P(d*'r) 1

the inference to be drawn from (3.21) is that the uniform

deployment d is nonoptimal for the problem by a factor of
1 -

1 - • .63. This should be compared with the factor e 6 .07,

by which the Prim-Read deployment fails to be optimal for the

problem (3.16).

C. CHAPTER SUMMARY

This Chapter is devoted to development of optimality prop-

erties of Frim-Read deployments in the single target case. As

previously explained, this case is of less interest in its own

right than as a motivation for and simplification of the multiple

target case. The results derived here are, for the most pert,

qualitatively similar to the results appearing in Chapter IV,

but are mathematically less complicated and imposing. A reader

who wishes to understand the flavor of the derivations given in

this paper could read those in this Chapter and omit those

in the following Chapters.

The main mathematical results presented in Chapter III are

the following:

1) Theorem (3.1), which states that if d , D(p) and theU'. payoff function P(d,.) is convex on [O,p], then d is the Prim-

Read deployment d*.
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2) Theorem (3.9), which asserts that for each p the Prim-

Read deployment d* is the unique solution to the optimization

problem

minimize I(d)

s.t. d t D(p) .

max P(dr) < 1r~p r -P '

That is, subject to the upper bound 1/p on the cumulative

probability of target destruction per attacking weapon com-

mitted, the Prim-Read deployment d* uniquely requires the

fewest interceptors.

3) Theorem (3.11), which shows that for each p the Prim-

Read deployment d* is the unique solution to the optimization

problem

minimize max p(dr)
r<p r

s.t. d .

That is, among deployments d with price p and interceptor

requirement at most that of the Prim-Read deployment d*, the

deployment d* uniquely minimizes the maximum probability of

target destruction per attacking weapon committed.

4) Example (3.15), which contains several conclusions of

interest. First, it is shown that the Prim-Read deployment is

not asolution to the optimization problem

minimize P(d,p)

s.t. I(d) < I(a*)

p(d) < p + 1
50
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and that the solution to this problem is the uniform deploy-
ment d defined in expression (3.18). However, it is shown that
d is 93 percent optimal for this latter problem--in which the
objective function is the probability of target destruction
rather than probability of target destruction per attacking
weapon committed -- whereas the uniform deployment d is only 37
percent optima] for the optimization problem of Theorem (3.11)
and result 3) pre3ented above. This is a useful robustness
property of Prim-Read deployments.

51
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Chapter IV
OPTIMALITY PROPERTIES: MULTIPLE TARGET CASE

A. INTRODUCTION

The objective of this Chapter is to present analogues,

for the multiple target case, of the optimality results derived

in Chapter III. In this Chapter we concentrate on the situation
where all targets, except possibly those of unit value, are
defended. The more important situation in which many targets

of differing values must be left undefended is treated in
detail in Chapter V.

We first derive analogues or Theorems (3.1), (3.9) and
(3.11) for the multiple target case. As in Chapter II we
assume that there are targets 1, ... , T of positive, integral

values v(l), ... , v(T). An interceptor deployment is a matrix

d = (d(J,i)), where d(j,i) is the number of interceptors
deployed at target J to attempt to intercept the ith attackinI
weapon directed there. The deployment d specifies a price

vector p(d,.) defined by

p(d,j) w min(i: d(j,i) a 0)

without loss of generality we assume that d(j,A) w 0 for each
J and all Z > p(dj).

For each integer k we denote by d# the Prim-Read deploy-
G3 ment with scaling factor k, given by Theorem (2.13) as

log(kv(j)-i+l) J 53 T;k Ji)- log q
1 1 , ., kv(j) .
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The associated price vector and interceptor requirement are

p(d*,J) - kv(j)

and

T

I(d*) -log q log(kv(j))

respectively, as given by Corollaries (2.15) and (2.17).

Throughout what follows, a caret over a vector denotes

the sum of its components; for example,

A TG- v(3)
3-1

is the total value of the targets.

Against a deployment d, the attacking side can be certain

of destroying all of the targets by committing

T

p(d) T p(d,J)Jol

properly allocated weapons. In what follows, therefore, it

seems more reasonable that one should fix the total of target

prices (i.e., the commitment of offensive resources required

to destroy all of the targets) rather than fix the individual

target prices (which, in effect, was done in Chapter 11T).
A

Consequently, for each k, let Dk denote the set of deployments

d for which

$(d) -p(d

and

n(d) I I(d*)

54
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A

Deployments in Dk impose the same commitment of attacking weapons

to destroy all the targets as does the Prim-Read deployment d*k
and require no more interceptors.

Given a deployment d, define

T
(4.1) V(d,i) - max Z v(J)P{target 4. destroyed)

a J-l

where the maximum is taken over all allocations a (a(l),...,
a(T)), of attacking weapons among the targets such that

T
a - Z a(j) i3-i

This is the payoff function discussed in Chapter I,A and
Chapter V,A. More specifically,

T r a(4) dJ Z
(4.2) V(dl) - max Z. v(J) -TI

a J-i L R1

and is the maximum expected target value that can be destroyed

by i attacking weapons. When we treat optimization problems

whose objective functions involve V, the attacking side is

assumed to optimize its allocation of weapons among targets,

based on knowledge of the deployment d. As noted in Chapter 1,

we suppose that either the attacking side is in fact able to

so optimize or the defending side is guarding against this

particular possibility.

B. OPTIMALITY RESULTS

The first result of this Chapter is the following, which

is analogous to Theorem (3.1). We emphasize that we fix only

the total of the target prices and not, which could be less

reasonable, the individual target prices.
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A

(4.3) THEOREM. Let k > 1 be fixed. If d e Dk and V(d. ) is

convex on [Op(d*)], then d - d.

PROOF. From Theorem (2.13) we have that

T
Sv(J)

V(d',i) - i L .k~ T

p (d*) j

J -l

* 4. --

mk

AA

for ! i<_ (d*); that is, V(d*.,.) is linear and, in particu-

lar, convex. Here v = .v(J) is the total of the target values.

Suppose now that d ,Dk and that V(d,.) is convex. We

shall first show that

(4.4) p(d,J) - p(dc ,J)
A

for each J a 1, ... , T. If (4. 4 ) fails, then since d t Dk, we
must have p(d,J 0 ) < p(d*,J 0 ) for some Jos which would imply
that

V(dp(d,J 0 )) > v(JO)

p p(dlJO)
k

On the other hand, convexity of V(d,.), together with the fact

that V(d,p(d)) ^, implies that

p(d,Jo)
V(dp(d,J 0 )) < k

P(d•,3o)
k
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Since the two preceding expressions are contradictory, (4.4)

must hold.

Convexity of V(d,.) further implies that

max v(j)qd(j 'l) . V(d,l)

-k

for all J, which is the same as

(4.5) d(j,l) > d*(Jl)

However, strict inequality in (4.5) for some j would lead to a
violation of the constraint that d # Dk and therefore

d(Jl) - d*(Jl)

for j - 1, ... , T.

The remainder of the proof follows by induction. 0
A crucial property of the Prim-Read deployment in the

multiple target case is that

S(4.6) p(d•,j)iv(j) - k

for all, J, i.e., the price of a target is proportional to its
value. As Theorem (2.13) shows, the defending side does not

then distribute its interceptor resources among the targets
in proportion to target values. What the defending side does
is to distribute its resources among the targets in a manner

that forces a rational attacking side to distribute its attack-
ing weapons proportionally to target values. The point is an
important one. being forced to choose first, the defending
side chooses so as to limit the alternatives available to the

attacking side when the latter behaves rationally. For the

multiple target case, (4.6) is an important effect of the defend-
ing side's choice.
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By analogy to Theorem (3.9) we obtain the following result,
which states that in the multiple target case as well as the
single target case, Prim-Read deployments (uniquelyl) minimize

the number of interceptors required by the defending side, sub-

ject to a constraint on the maximum average target destruction
per attacking weapon committed.

A

(4.7) THEOREM. Let k be a positive integer arnd let v be the

total value of all targets. Then the Prim-Read deployment d*

uniquely solves the optimization problem

minimize I(d)
A

s.t. P(d) - p(d*)

ma V(d,r) 1
l•_r<p(d) V r -<

AA

PROOF. Recall also that p(d*) w kV. It follows from earlier

results that d# is a feasible solution to this problem.

Consider now an optimal solution d'. Taking r - 1 in the

second constraint gives the requirement

max v(j)qd'(Jjl) 1
j-l,... ,T

Hence for each j we must have

d' (j 1)> IoP:k

d"(Jtl)k

Since the Prim-Read deployment is feasible, we infer that

d1(jjl) -d*(j91)

for J - 1, .. , T. The remainder of the proof follows by

induction in the manner of the proof of Theorem (3.9).
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In the same way that Theorem (3.11) is related to Theorem

(3.9), the next Theorem is a complementary version of Theorem

(4.7).

(4.8) THEOREM. The Prim-Read deployment d* is the unique

solution to the optimization problem

(4,9) minimize ma

lý.r~p (d) r

s.t. d *Dk .

We omit the proof.

A further property of Prim-Read deployments, which has no

analogue in the single target case, is that Prim-Read deployments

uniquely prevent the attacking side from being able to benefit

from its being permitted to optimize its allocation of attacking

weapons among targets based on knowledge of the deployment

chosen by the defending side.

(4.10) THEOREM. Let k be a positive integer and for an

integer-component vector a - (a(1),...,a(T)) let

(4.11) V(d,a) - I v(j) 1- a(J1  _q

which is the expected target value destroyed by the allocation

a of attacking weapons. Then of all deployments d 1 .k' the

Prim-Read deployment d* is uniquely characterized by the prop-

erty that ý(d*,') depends on the allocation a only through aA,

provided that aQ() I p(d,J) for each J.

PROOF. From (2.12) we have

V(dOa)
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for all a. Suppose now that d t Dk satisfies the stated property.

By considering (1,0,...,0), (0,1,0,...,0),...,(O,...,Qi) as

successive choices of a, we conclude that

(4.12) v(J)qd(J)l) - v(J')qd(J''l)

for all J and J'. Consider next two targets j and J', and the

two allocations

a - *I) .. . )0)

and

a 2  (°$""2 6 "°"90P ...[, o)

We must then have

(4.13) v(j)qd(iil) + v(J,)qd(J , * v(i)V- n (l-qd 4)]

Using (4.12) we may transform (4.13) to

(4.14) qd(Jj2) . d(J,!)

of course, a similar expression holds for J'.

We may continue this process of' simplification, which

becomes harder notationally but not conceptually, to conclude

that d(j ,i-l)

*1 -q
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for all J and i. Finally, (4.15), together with the constraint

that d D Dk' implies that d - d.

The interpretation of Theorem (4;10) is not that the Prim-

Read deployment restricts the attacking side in its choice of

actions, given a fixed stockpile of attacking weapons, but rather

that the Prim-Read deployment limits the range of effects of

those actions. In particular, the attacking side, when con-

fronted by a Prim-Read deployment, cannot gain from being able

to allocate its weapons among the targets. According to Theorem

(4.10), in ohis case the target value destroyed depends only on

how many attacking weapvns are committed and not on how those

weapons are distribute') among the targets, provided only that no

weapons are wasted by being directed at targets that are certain

to have been destroyed.

C. ADDITIONAL PROPERTIES

As is also true for the single target case, in the multiple

target case the Prim-Read deplcyment does aot solve every optimi-

zation problem arising from the basic target defense model. The

following Example parallels Example (3.15), to which the reader

is referred for background and comparison.

(4.16) EXAMPLE. In this Example we consider an optimization

problem that stands in the same relation to the problem (4.9)

solved in Theorem (4.8) as does (3.16) to the problem (3.12)

solved in Theorem (3.11). Specifically, that problem is the

following: Let k be a fixed positive integer, fix the attack-

ing side's resources at

A 0- kv - )

and fix the defending side's interceptor resources as

T
I I(dt) log q Jul-
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These are the resources expended by the attacking side (to

destroy all of the targets) and required by the defending side,

when the latter uses the Prim-Read deployment d*. Then, con-

sider the optimization probleri

(4.17) minimize max I v(J) [- 11)(q )
a Joiil

T
s.t I a(J) < A

Ju1
p(dj) --oS[(kv(j))!] - l,.., T

i' dji) < - log q

In the problem (4.17) the defending side seeks a deployment

d that:

1) At each target deploys at most as many interceptors as

does the Prim-Read deployment d*.

2) Minimizes the maximum expected target value destroyed
when the attacking side is able to optimize it3 allocation

a - (a(l), ... , a(T)) of attacking weapons among the targets,

given knowledge of the defending side's deployment.

We observe that, in keeping with Assumptions (l.2a) and

(1.2d), interceptors cannot be reassigned to different targets.

We have not been able to solve (4.17). However, consider

by analogy with Example (3.15) the uniform duployment d given

for each J by

(4.18) d(3,i) -

for i - 1, ... , kv(J), where

.' (4.19) Ij - log[(kv(J))!]

j lo~g q
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is the total number of interceptors deployed at target J, as

an alternative to the Prim-Read deployment d*. Against the

deployment d, the optimal allocation of attacking weapons

remains the same as it was against the Prim-Read deployment

d*, namely

"(4.20) a(J) - kv(j) J - 1, ... , T.

The optimal value of the associated objective function is

1 ]kv(j)\
(4.21) v(d,a) - I• v(j)(l [-T- v l- 1)

Jul ( )/

By comparison with (3.19) and the subsequent analysis we can

see that as k 0

(4.22) V(d,a)

.93v

Therefore, for large values of k we have

(4.23) .93

so that for the problem (4.17), the Prim-Read deployment is

demonstrably 93 percent as effective as the uniform deployment

d, as it was in the single target case.

On the other hand, let us consider the problem (4.9) to

which d' is the optimal solution. The optimal objective func-

tion value is

max V(d*.ii) 1

i<A

For the problem (4.9) the uniform deployment d defined by (4.18)

- . 6 3
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is far from optimal. In fact,

V(d~a4i)rl
max -max v(j ( 1
i<_A i LjvQ 1

e~•

as k ÷ •. Moreover, the maximum value is attained for i T

with one attacking weapon directed at each target.

One may draw the same robustness conclusion as was valid

in the single target case; of. Example (3.15).

REMARK. A more sensible alternative to the problem (4.17)

is the problem

(4.24) minimize max v(J) I- n d(J i)\
d a Jl = i-J

T
s.t. I a(J) < A

j,-l

I(d) < I

In this problem, the defending side is constrained to the number

of interceptors required for the Prim-Read deployment, but not on

a target-by-target basis, as was the case in (4.17). Since the

defense constructs the deployment from scratch, interceptors can

initially be assigned to any target, even though they may be dif-

ficult to move from target to target thereafter. One can view

(4.17), therefore, as being restricted to possible improvement of

ian existing Prim-Read deployment. Unfortunately, the problem

(4.24) has been intractable.

We do wish to observe, however, that it is a consequence of

Example (4.16) that d* is not an optimal solution to the problem

(4.24). As would be expected, d* is relatively less optimal for

the latter problem than for the problem (4.17), since the only
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difference between the two is that (4.24) has a larger con-
straint set. However, we have not been able to obtain lower
bounds for this case such as obtained in Example (3.15).

D. CHAPTER SUMMARY

This Chapter contains a development of mathematical opti-
mality properties of Prim-Read deployments in the multiple

target case, but under the assumption that either all targets
are defended or only targets of unit value are left undefended.
To read the summary below, recall that for each integer k > .,

d# is the Prim-Read deployment with scaling factor k (as givenkA
in (2.14)), Dk is the set of deployments with the same total
of target prices as d* and interceptor requirement not greater
than that of d*, and V(d,i) is the target value destroyed by

an attack consisting of i attacking weapons that is optimized
against the deployment d. The principal results of this Chapter

are then the following.

2.) Theorem (4.3), which asserts that if k i; fixed, if
d , DkI and if V(d,.) is convex on the interval [0,p(d*)],

then d - d*. That is, of deployments with a prescribed totalk
of target prices (i.e., a prescribed commitment of attacking
weapons required to destroy all of the targets) and needing no
more interceptors, only the Prim-Read deployment entails a
convex payoff function, with the associated increasing returns
to scale, for the attacking side. Faced with such a payoff
function the attacking side would choose to expend its resources

in order to destroy the defended targets and not divert those
resources to other uses.

2) Theorem (4.7), which demonstrates that for each k the
Prim-Read deployment d* is the unique solution to the optimiza-

tion problem
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minimize 1(d)
€4.'

s.t. p(d) - p(d*)

max V(d,r) 1
A r k

)Ar~l (d) (

In physical terms, this result means that subject to a fixed

total of target prices and an upper bound on target value

destroyed per attacking weapon committed, the Prim-Read deploy-

ment uniquely requires the fewest interceptors.

3) Theorem (4.8), in which is stated that for each k the

Prim-Read deployment d* is the unique solution to the optimi-

zation problem

minimize max V(d~r)
r

A

s.t. d * Dk

The interpretation here is that with the total of target prices
and the supply of available interceptors fixed, the Prim-Read

deployment uniquely minimizes the maximum (over all attack

sizes) target value destroyed per attacking weapon committed.
This property is essentially argument 2) used in Chapter I, A

to justify linearity of the payoff function Vd. A

4) Theorem (4.10), which states that if for an allocation

a of attacking weapons we define

T r a(J) /-d(J)
V(d,a) v(J)- l-q

Jul L hi

which is the expected target value destroyed by the allocation

a, then of all deployments in D, *^ only the Prim-Read deploy-
ment makes 1(d,a) dependent on the allocation a only through
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A T
its total size a - a(j). That is, the Prim-Read deployment

Jol

d* is characterized by its imposing on the attacking side a
k

"uniformity of effect," in the sense that the target value

destroyed is a function only of the number of attacking weapons

committed and not of the way those weapons are allocated among

the targets.

5) The nonoptimality statements gathered in Example (4.16).

Specifically, it is shown there that with the two sides'

resources fixed at appropriate Prim-Read levels, the Prim-Read

deployment d* is not a solution to the optimization problem
k

minimize V(dA)

s.t. A - kv

~ p(d~pj)p(d J) k~•J
S d(J.,i) I d*(J,i) , 011i ... , 1 .

i-1 i'l

That is, with no reassignment of interceptors from target to
target permitted, the Prim-Read deployment does not minimize

the expected target value destroyed by an optimized attack.

However, the Prim-Read deployment is robust in the sense that

it is nearly as effective as the uniform deployment; by com-

parison the uniform deployment is far from optimal for the

problems, cf. 2) and 3) just above, to which the Prim-Read

deployment is the optimal solution.

As a consequence of the results noted in 5), the Prim-Read

deployment is not an optimal solution to the corresponding

problem in which interceptors may be reassigned from one target

to another.

We emphasize, in concluding this Chapter, that in the dis-
-i. cussion herein, essentially all targets have been defended.

* "In reality, however, the defending side will possess insufficient
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interceptor resources to defend all (or probably even most) of

the targets. It must, therefore, leave many targets, generally
not all of the same value, undefended. The choice problem
faced by the defending side thus becomes yet more complicated.

The target defense principle discussed in Chapter I, A provides

a basis for choosing which targets to defend and a partial basis

for deciding how to defend them. The next Chapter is devoted to

exploration of the consequences and implications of this very

important principle.
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Chapter V

CONSEQUENCES OF THE TARGET DEFENSE PRINCIPLE

As observed in Chapter 1, the important practical problem

in nationwide target defense concerns the case when many tar-

gets, almost always of differing valuest must be left undefended.

The discussion in Chapter IV did not include this case; there

we assumed that either all targets were defended or only targets

of unit value were left undefended. In this Chapter we discuss

in detail properties of' Prim-Read deployments when there are

many undefended targets and when the target defense principle

is assumed to be satisfied. We obtain not only results analo-.

gous to those of Chapter IV but also some additional results.

A. GENERAL DISCUSSION

Before presenting the mathematical results of this Chapter,

we will discuss the target defense problem in fairly general

terms, but more mathemati~cally than in Chapter I, A. At thJi.s

point we refer the reader to Figure J4, which depicts several

payoff' functions corresponding to different defensive deploy-

mernts. Recall that

which is the maximum expected target value that can be destroyed

by commitment of' i attacking weapons. To obtain the payoff

V(d,i), the attacking side optimizes its allocation of weapons

among targets3 given knowledge of the deployment d.

In Figure L4a we show the pý,yoff function V(O,-) corres-~

pending to the case when no targets are defended ("10" denotes

69

C%______________________________________



NO TAGT DFNE

b. SOM TARGETS DEFENDED

M. OME TARGETS DEFENDED

~~ Figur~e 4. POSSIBLE PAYorF FUNCTIONS
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the deployment which deploys no interceptors). This payoff

function is strictly concave on (0,-), since when there is no

defense (and attacking weapons are assumed to be reliable) the

attacking side's optimal response is to destroy the targets in

order of decreasing value. To maximize target value destroyed,

the attacking side commits as many weapons as possible, whereas

to maximize target value destroyed per attacking weapon com-

mitted, the attacking side should commit only one weapon

(directed at the most valuable target, of course).

The payoff functions shown in Figures 4b and 4c arise when

some targets, but not all, are defended using a Prim-Read deploy-

ment constructed in the manner described below in this Chapter.

In Figure 4c, more targets are defended than in Figure 4b. For

both Figures i* is the number of attacking weapons necessary to

destroy all of the initiaZ4y defended targets. Details of the

construction of Prim-Read payoff functions will be given

presently.

Underlying the defending side's choice of which targets

to defend, and how to deploy interceptors at each defended

target, is the target defense principle put forth in Chapter I,

which we restate here.

TARGET DEFENSE PRINCIPLE. a) Targets must be defended

in order of decreasing value.

b) If a target is initially defended, then up to the point

at which it is destroyed with certainty, the expected target

value destroyed by an attacking weapon directed at it must be

greater than or equal to the value of every initially undefended

target.

The rationale for the target defense principle is that if
defensive resources are to be expended, it must be in such a

manner that the attacking side be forced to commit its weapons

to defended targets rather than undefended targets, at least

up to the point that all defended targets are destroyed.
71
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In more mathematical terms, both parts of the target

defense principle may be combined into the following statement:

a deployment d satisfies the target defense principle if when-

ever p(d,J) > 1 (i,e., target J is initially defended) and

p(d,j') - 1 (target J' is not defended), then

S!< v(J)p(d,J,i)

i- (~ t lqd (j ,Z qd Q , it

for i w 1, ... , p(d,J). Recall that p(d,3,i) is the probability

that target j is destroyed by the ith attacking weapon directed.

at it. In particular, v(J') < v(j), which is the first part of

the target defense principle.

For further discussion of the target defense principle we

refer to Chapters I and VIII and to references L[5,19].

Figures 4b and 4a represent the payoff functions of Prim-

Read deployments that satisfy the target defense principle;

these payoff functions are linear up to the point i0 at which

all of the defended targets are destroyed and thereafter coinci-

dent with a translated portion of the payoff function from the

undefended case. To respond optimally to a Prim-Read deploy-

ment, the attacking side should destroy the defended targets

in an arbitrary order and then destroy the undefended targets

in order of decreasing value.

The more targets are defended, the lower the slope of the

linear segment of the payoff function, which is illustrated by

comparing Figures 4b and 4c. In fact, there are three ways in

which the defending side's choice of a Prim-Read payoff function

can be interpreted:

(1) choice of which targets to defend;

(2) specification of the slope of the linear segment of
the payoff function;
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(3) specification of the number of attacking weapons

required to destroy all of the defended targets.

We will describe how to construct a Prim-Read payoff
function based on each of these three methods of choice.

For the first method of construction, based on choosing
which targets to defend, we refer the reader to Figure 5. If'
V(O,.) denotes the payoff function for the undefended case,
then the procedure is the following:

1) According to the target defense principle, the defended
targets must be the i1 most valuable targets for some iI < T
(T is the total number of targets).

V(d, I)

V0 ", PAYOIf FUNC~rON WHEN NO
TARMTU ARE DEFUNNDWED

WROHIONAL ThAK&LA3&,7

V . ......... ..... ......... ......

C, Figure 5. CONSTRUCTION OF PRIM-READ PAYOFF FUNCTION

BY SPECIFYING DEFENDED TARGETS
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2) Let

v1  V(Oi 1 ) 3

which is the total value of the targets to be defended.

3) The Prim-Read payoff function is to be linear on the

interval CO,i±l, where i* is the (yet to be determined) number

of attacking weapons needed to destroy the defended targets.

By the target defenise principle, the slope of the linear

segment, namely

v

must be greater than or equal to the slope of V(O,.) at i1.

This is because the payoff function V(d*,.) for the Prim-Read

deployment will be a translation of V(O,.) once all the

defended targets are destroyed. Hence we must have

5 >_ V'(O,i 1 ),

where the prime denotes differentiation. The defending side

will now choose i* as large as possible but such that

vi
Ti > V,(O,il)

Ignoring possible discreteness difficulties, it will be possible

for the defending side to take

v1

which completes determination of the Prim-Read payoff function.

Specifically, the Prim-Read payoff function is then given

by

' '. , , .
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V~d*,i * i.V(0,i1)on E~~

¶ u V~o~i(i"-i~))on(ic)

where i* vi v/V'(O111). One must then derive a deployment having

this payoff function, which we do in Section B below.

The second construction of Prim-Read deployments requires

first specifying the slope of the linear segment; this is illus-

trated in Figure 6. The procedure to be used is the following:

VfI)
V(6.4-PAY1WI PUNICTU WWN

b. PHAL MIULT

Figure 6. CONSTRUCTION OF PRIM-READ DEPLOYMENT BY
SPECIFYING SLOPE OF THE LINEAR SEGMENT



1) Let s* be the prescribed slope of the linear segment.
By strict concavity of V(O0.) there is at most one point i.

such that

V'(O,i) s*

If there is no such point, it is impossible to construct a
Prim-Read deployment for which the linear segment has slope s*.

2) If there exists a unique iI such that V'(O,i 1 ) s*
then the i1 most valuable targets must be defended and the

remainder of the construction follows the preceding case.
Alternatively, as shown in Figure 6, one takes the linear

portion to the left of1 i1 and V(O,') to the right of i and

translates this graph to the right until the linsar segment
passes through the origin. The flatter the linear segment
the more translation and the greater the conmmitment of attack-

ing weapons required to destroy the defended targets.

The final method for constructing a Prim-Read deployment

involves specification of the commitment i* of attacking wea-

pons necessary to destroy the defended targets, and is carried

out as follows:

1) By concavity of V(O,.) there is at most one point i 1

such that
V(O,i 1 )

SiW " V'(01' 1) "

If there is no such point, it is impossible to construct a
Prim-Read deployment with the prescribed value of i*.

2) If there is such a point iI, proceed as in the two pre-

vious constructions, defending the i1 most valuable targets.

The reader will observe that all three procedures yield
payoff functions of the same form; they differ based on what is
prescribed at the start by the defending side. Some other

relevant points are:
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1) The amount by which target value destroyed is decreased

relative to the uindefended case, i.e., the difference V(O,i.) -

V(d*,i), initially increases in i until it attains its maximum

at I w il and thei'estter dev:ý-,;•aoes to zero as i ÷ ®.

2) The rrore targets the defending side has the resources

to defend (or, equivalently, the flatter the linear segment of

the payoff function, or the greater the commitment of attacking

weapons needed to destroy all of the defended targets), the

greater the decrease relative to the undefended case.

3) For Prim-Read deployments the maximum value of

V(d*,i)/i is attained for all i # [0,01]. The attacking side,

if it seeks to maximize target value destroyed per attacking

weapon committed and if destroying more targets is preferred to

destroying fewer, will then expend the resources required to

destroy all of the defended targets, but will not attack any of

the undefended targets.

As a final point, we observe that when there are undefended

targets, there is no arbitrariness in the choice of target prices,

as there was in the unspecified scaling parameter k of Definition

(2.11). The prices of the defended targets are made as large as

possible without violating the target defense principle.

B. MATHEMATICAL RESULTS

Before presenting our principal mathematical results, we

motivate them, and also illustrate the target defense principle,

by means of an example.

(5.1) EXAMPLE. Let there be four targets with values v(l) - 8,

v(2) - 4, v(3) - 2, v(4) - 1 and suppose that q = 0.8. We will

determine Prim-Read deployments for various choices of-defended

targets and also the associated required numbers of interceptors.

_" In accordance with the target defense principle, the targets must

be defended in order of decreasing value, i.e., in the order

1,2,3,4.
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If only target 1 is defended using a Prim-Read deployment

d#, then in order to satisfy the second part of the target

defense principle, its price, p(d*,l), must be (less than or)

equal to 2. Each of the first two attacking weapons directed

at it then yields an expected target value destroyed equal to 4,
which is the value of the most valuable undefended target. To

implement the resultant Prim-Read deployment requires 3.11

interceptors.

Suppose now that (only) targets 1 and 2 are to be defended.

To satisfy the target defense principle, d* must now satisfy

p(d*, 2 ) v(2- . 2

to maintain parity between targets 1 and 2, both of which are

now defended, we must also have

p(d*,l) - p(d*,2)

4.

The interceptor requirement becomes 17.35.

If targets 1, 2 and 3 are to be defended, which corresponds

to k - 2 in the notation of Definition (2.11), then the prices

must be

p(d*,3) a 3 2v(4)

p(d*,2) - (2 -4v(4

and 0

p(dWl) - - 8

the interceptor requirement is 64.87.

If more than 65 interceptors are to be used in a Prim-Read C

deployment, then target 4 must be defended before additional
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interceptors can be deployed at the more valuable targets.
For k - 2, the interceptor requirement is 202.33, while those
for k - 3 and k - 4 are 372.60 and 564.71, respectively.

Figure 7 illustrates four of the choices described above,
along with the payoff function when no targets are defended. In
that Figure, a "discrete" graph has been linearly interpolated
for clarity. Each Prim-Read payoff function is linear up to and
including the destruction of the most valuable undefended target.

NO TARGETS

14 _EFNzED
TARGET 1

-____ / DEFENDED_

TARGETS 1 AND 2 _____

O0
a~~ TA T1 2 AND3 -

DEFENDED

@S

AALL TARGETS DEFENIDED
WJ~flj~(4)-2

010

Figure 7. PRIM-READ PAYOFF FUNCTIONS FOR EXAMPLE (5.1)
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We now proceed to a precise definition of Prim-Read deploy-

ments. Suppose that there are targets 1, ... , T of respective

integer values v(l), ... , v(T), so that

(5.2) v(l) > v(2) >...> v('r-l) > v(T) 1 .

and that (.

(5.3) M VU)

is a positive integer for i - 1, ... , T - 1. While the assump-

tion (5.2) is not restrictive, the assumption (5.3) is; however,
we have been unable to avoid it in some form. Its usefulness

will become apparent momentarily and ways of minimizing its

undesirable effects will be discussed below. .)

By analogy with Definitions (2.4) and (2.11) we propose

the following.

(5.4) DEFINITION. Suppose that J. < T. A deployment d* is a

Prim-Read dapZoyment defending targets 1, ... , J0 provided

a) p(d*,J) > 2 for ,I - 1, ... , J0;

b) p(d*,J) 1 . for j w J0 + 1, ... , T;

c) If J < J 0 , then

Jo
I v(Z)

Jol
(5.5) v(J)p(d*,J,.i) - JO

I p(d*,Z)
L-3,

for i 1 1, ... , p(d*.,J);

d) If J < Jo and i < p(d*,J), then

(5.6) v(J)p(d*,J,i) > v(Jo+l)
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Some comments are in order before we explore the conse-

quences of Definition (5.4).

1) A Prim-Read deployment d* satisfies the target defense

principle. By (5.2) the more valuable targets are defended and

the less valuable targets left undefended. The second part of

the target defense principle is expressed by (5.6): the expected

yield from an attacking weapon directed at a defended target, up

to the point where destruction of the target is certain, exceeds

the value of the most valuable undefended target.

2) Although (5.6) is stated as an inequality, (5.3) will

allow us to construct deployments for which it holds as an

equality.

3) The condition (5.5) is the Prim-Read equalization

criterion appearing in operationally different, but conceptually

identical, form in (2.5) and (2.12) above and in (7.1), (7.10)

and (7.15) below. Given that targets 1, J 0 are defended

by a deployment d,

J0
"- I p(d,)

is the number of' attacking weapons needed to destroy them,

while

Jo
A 0

is the total of their values. Therefore the ratio vl/i* is

the target value destroyed per attacking weapon committed to

the defended targets, and (5.5) stipulates that each such

attacking weapon have this as its yield.

14) Against a Prim-Read deployment, the attacking side's

optimal response is to first destroy the defended targets and

then destroy the undefended targets in order of decreasing
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value. Consequently, the payoff function V(d*,.) is given by

A

v1
V(d*,i) - i - for 1 < i < i*

J 0+i-i*
- I v(z) for i > i*.

tulu

That is, the payoff function is a linear segment followed by a

translated portion of the undefended case payoff function and

is of the form discussed in Chapters I,A and V,A above.

The following analogue of Theorems (2.6) and (2.13) can

be proved using our earlier methods, so we omit a derivation.

(5.7) THEOREM. For each J0 < T there exists a Prim-Read

deployment d* defending targets 1, ... , T, which is given by

(5.8) d*(J,i) - log q 0;

where n(J) - v(J)/v(J 0 +l), which is an integer by (5.3). For

this deployment, (5.6) holds as an equality for each J and i.

In particular, we have p(d*,J) - n(J) for J - 1, ... , Job

so that target prices for defended targets are proportional to

target values. Also, the interceptor requirement is

I(d*) log[n(J)iJ

As noted in the statement of (5.7), the deployment d* given

by (5.8) satisfies (5.6) as an equality, which makes it the maxi-

mally strong Prim-Read deployment defending targets 1, ... ,0

and satisfying the target defense principle.

Our first optimality result is analogous to Theorem (4.8).
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(5.9) THEOREM. Let J0 < T be fixed and let d* be the Prim-

Read deployment given by (5.8). Then d# is the unique solution

to the optimization problem

(5.10) minimize max V(dr)

"I<r.ip(d*) r

s.t. I~d) < I~d#).

Before proving Theorem (5.9) we point out that the con-

straint does not include a requirement that d defend precisely

the targets 1, ... , J0; however, we will show that any optimal

solution to (5.10) has this property.

PROOF. We observe first that, from (5.6),

max V(d*,r) - V(Jo+1).

It will be shown that if

ma.V(d,r)(5.11) mX <VJ+)3r - v(J 0 +l)

then d - d*, which suffices to establish unique optimality of d*

for the problem (5.10).

We begin by showing that if d satisfies (5.11), then

p(d,J) - p(d*,J) for all J 1, ... , T. First of all, if

p(d,j) < p(d*,J) for some J <J then

V~d~p(d,J)) >H•

p(d,j) - odJ)

> V(j v(J+1)

which contradicts (5.11). Therefore p(d,j) > p(d*,J) for all
J; in particular, p(d,J) > 1 for j < J0.

On the other hand, if p(d,j) > p(d*,I) for some J, then
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d(jp(d*,J)) > 0 - d*(J,p(d*,j)),

so that in order that the constraint in (5.10) not be violated

there must be h with 1 < h < J0 such that

p(dN h)-l p(d*I h)-1

(5.12) d(h,i) , t d*(hi)
jul 1-l

However, (5.12) implies that

V~djp~d',h)-l]_ >V(d*4p~d*.h)-l) .v(Ol
--p(d*,h)-i pld ,h)-l (ol

which again contradicts (5.11). Consequently, p(d,j) - p(d*,J)

for all J.

It remains to show that

(5.13) d(Ji) - d*(,-i)

for 1 < J <_J and 1 Li _ p(d*,J). Since 1(d) < I(d*) either

p'(d* j )-I p(d" J)-i

-iwl iul

for all j . J0 or ýhere exists vc.me h for which

p(d* h)--l p(d* h)-1(5.14b) t d(h,,i) ' . d* (h,$)

iul i.l

If (5.14b) were true, the argument of the preceding paragraph

could be applied to yield a contradiction to (5.11). Therefore,

(5.14a) holds for each J and Theorem (3.11) may now be invoked

to conclude that (5.13) is satisfied. f

Consequently, when (5.3) holds, in order to minimize the

maximum target value destroyed per attacking weapon committed,

the defending side should implement a Prim-Read deployment.
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If I is the supply of available interceptors, the defending side

would then choose

(5.15) Jo - max{J: I(d*) < I}

If J 0 < T, targets 1, ... , J 0 would be defended using the

deployment d* given by (5.8). If J0 M T, then all targets can
be defended, which can be done using a Prim-Read deployment as
described in Chapters II and IV.

To circumvent the nondiscreteness difficulties that are
excluded by (5.3) but clearly do arise in reality, one could

do the following:

1) Determine J 0 by (5.15).

2) Take

p(d*,J 0 ) - maxtk: v(Jo) > kv(J 0 +l)}1

as the price of target J0.

3) For J < Jo take either

p(d*,J) - max{L: v(J) Z Lv(J 0 +l)}

or (by backward recursion)

p(d*,J) - max{L: v(J) > 2v(J+l))p(d*,J+l)

The first of the two methods in step 3) places greater
emphasis on (5.6), the target defense principle, and the second,

greater emphasis on (5.5), the Prim-Read equalization criterion.
Although we have not investigated the question in detail, we
suspect that the Theorems of this Chapter remain approximately
true for such deployments.

In order to choose a Prim-Read deployment that forces
expenditure of a known stockpile A0 of attacking weapons, the

defending side would proceed in the following manner (assuming
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that (5.2) and (5.3) are satisfied)-

1) If there exists J0< T such that

Jo
(5.16a) A0 < I v U

then implement the Prim-Read deployment d* that defends targets
1, ... $, J0 which is given by (5.8).

2) If

T-l

(5.16b) A0 T i + 1J-i

then implement the Prim-Read deployment that defends tairgets
l, ... , T - 1; the last attacking weapon will be used Qn the

undefended target T.

3) if

(5.16c) Ao > IV(
0 .l '(T

then all targets must be defended, and a Prim-Read deployment
may be chosen as described in Chapter I1.

It was demonstrated in Theorem (4.8) and Example (4.16) that
when all targets are defended, Prim-Read deployments do not
solve optimization problems in which the objective function is

target value destroyed, whereas they do solve problems in which
the objective function is target value destroyed per attacking
weapon committed. Specifically, for problems of the forms
(4.17) and (4.24) Prim-Read deployments are not optimal. There-
fore, it is of interest to examine the same sorts of questions
for the situation to which this Chapter is devoted.
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It will be shown, in Theorems (5.17) and (5.32), that when
the target defense principle is assumed to hold, the following

properties are valid:

a) Prim-Read deployments minimize, in most cases uniquely,
expected target value destroyed by an a~tack that is not suffi-

ciently large that it exhaust the Prim-Read defenses.

b) There exists a deployment with the same interceptor

requirement as the Prim-Read deployment that is uniformly better

(i.e., has a smaller payoff function) for all attack sizes

between the Prim-Read exhaustion point and the point (against
the Prim-Read deployment) at which all the targets are destroyed,

and which also satisfies the target defense principle.

The following result is one of the most important results

in this paper; together with Theorem (5.32) it conclusively and

unambiguously delineates optimality properties of Prim-Read

deployments as a function of the number of attacking weapons

committed.

(5.17) THEOREM. Let J 0 < T be fixed and let d* be the Prim-

Read deployment given by (5.8). Assume that for each J ý J0

there is a positive integer n(J) such th.it v(J) - n(j)v(j0 +1).

Then for each A such that

S10 Jo
A < Z n(J) - Z p(d*,J)

Jol Jul

the Prim-Read d;ployment d* is a solution to the optimization

problem

T rJ a(J) d Z)
(5.18) minimize max v ') 1- lq

a:a<A Jl L -1

•,' st. l(d)<_I(d*)

(5.19) v(J)p(d,J,i) >_v(Jo+l) , J-l,...,J0

i8l,..,p(d,J).
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If A > n(l) - 1, then the Prim-Read deployment d* is the unique

solution to .(5.18).

As indicated symbolically in (5.18), the maximization there

is over all allocations a - (a(l),...,a(T)) of attacking weapons

among the tar'gets for which

T
a T a(J) < A ;

J-1

of course, a- A for the maximizing allocation a.

The interpretation of' Theorem (5.17) is that, given a

choice of which targets are to be defended and if the target

-defense principle must be satisfied, then the Prim-Read deploy-

ment minimizes the expected target value destroyed, provided

that the number of attacking weapons not be more than that

reqAured to destroy all of the defended targets. If the attack

size is large enough to exhaust the Prim-Read defense at the

most valuable target (and hence at any defended target), the

Prim-.Read deployment is uniquely optimal.

Wo now give the proof of Theorem (5.17).

PROOF of THEOREM (5.17). To establish optimality of d* for the

problem (5.18), the following computation suffices: if d satia-

fies the constraints there, then

T J (,(T a J)

a<A j.l J-l k-i

T a J)
> max Q v(J +1)

Jul Z-l

[by (5.19)]

88 v(J 0 +)A
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T aQj d*j ZJ)l
max v(j) - -q

a J-1 ZL 1

We now prove uniqueness under the assumption that

(5.20) A > n(l) - . - ( max n(j)) - 1

To this end, observe first that the proof of Theorem (5.9) shows

that if d satisfies the constraints of (5.18) then

p(d,j) < n(J) , J.,,. ,JO

and

qd(J,,) > 2 ,0 2,...,JO
nq7)-Z+1 -1l,...,p(dJ)

For each target J, either (5.19) holds with equality for

i w 1, ... , n(J), in which case

p(dj) - n(J)

and

d(J,Z) - OQO,)

for Z - 1, ... , n(j), or else there is i 0 (depending on J) such

that

"(5.21) v(J)p(d,J~io) > v(Jo+l)

and such that no smaller value of i satisfies (5.21). If we put

P(d,JZ) a 1 - Hl ( 1 -qd(j'r))

ral

which is the probability of destruction of target J by one of

4 S the first Z attacking weapons directed at it, then we may infer
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from (5.21) that

v(J)P(d,J,R,) = v(j 0 +l)

for u i, ... , i 0 - 1, while

v(J)P(d,J,i.0 ) > i 0 v(J 0 +l)

In order that the target defense principle (5.19) remain satis-

fied, we must then have

v(J)P(d,j,k) > Zv(j 0 +l)

for all k, > i 0 , which is possible only if

p(d,j) < n(j)

Suppose now that d # d* satisfies the constraints of

(5.18) and that (5.20) holds. It follows from the preceding

paragraph that there is some j <I J such that

p(d,J) < n(j) - 1

Consequently, with A weapons the attacking side can destroy

strictly more target value than against the Prim-Read deploy-

ment by destroying target J with (at most) n(j) -1 shots and

then destroying one of the undefended targets. Therefore,

T
max I v(J)P(d,j,a(J)) > Av(J 0 +1)

a J-1

which completes the proof of the uniqueness assertion.

REMARK. In response to the question whether the assumption
(5.20) is essential for uniqueness, it-is easy to answer in the
affirmative. For example, if T a 3 with v(1) - 8, v(2) - 4 and

v(3) - 1 and if J 2 then we have n(l) - 8 and n(2) a 4. The
deployment d given by
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d(l,i) -lo&(9 - 1)
log q

log 4~
- log q

and

d(2,2) 0 0

satisfies the target defense principle and also has the property
that

-max • v(J) [i-qd (j•)

- max vr 1 al 1 -qd*(J,)

and therefore d' is not the unique solution to (5.18) when D
A m 1 < max {n(j)-l}

Ja-I o

Yet another optimization problem of interest is uniquely
solved by the Prim-Read deployment when the target defense

principle is assumed to be satisfied: Prim-Read deployments

uniquely maximize the number of attacking weapons that must be

committed in order to destroy the defended targets. We state

this property next, but omit the proof, which is rather lengthy

and tedious, albeit straightforward.

(5.22) THEOREM. Let J0 < T be fixed and assume that for

each J < J0 there is a positive integer n(j) such that v(J) -
n(a)v(J 0 +l). Then the Prim-Read deployment d* given by (5.8)

is the unique solution to the optimization problem

J0
0 (5.23) maximize • p(d,J)

Jul
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(5.24) S~. v(J)p(d,j,i) Q v(0 +1) ,Jl,.,

i~l, .. .,p(d,J).

Here the target defense principle is embodied in the

constraint (5.24).

REMARKS. 1) One motivation for Theorems (5.17) and (5.22)

was an attempt to discover to what extent the target defense
principle alone determines the form of a deployment d. The

constraint (5.24), i.e., the second part of the target defense

principle, implies that

(5.25) P(d,J) < n(j)

and

(5.26) d(JZ) < - log(n(J)-Z+l.)
log q

Vfor J _ J0 and t < p(d,j). (Incidentally, the first part of

the target defense principle is embodied in our labeling the

targets in order of decreasing value.)

It is easy to show that there exist deployments satisfying

(5.25) and (5.26) that are not Prim-Read deployments. To con-

sider a specific example, let T - 3 with v(l) - 8, v(2) - 4,

v(3) a 1 and let J0 a 2. Then n(l) - 8 and n(2) - 4. One

deployment satisfying (5.25) and (5.26), and not of Prim-Read

form, is given by

qd(ll) 1d ( .

f 2
d(1,2) 1 d(2,2) 4

q T.

qd(1,3) 1 d(2,3)qr
"qd(1,4 )
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Verification of (5.25) and (5.26) is easy; the associated inter-
ceptor requirement is I(d) - 17.876. Against this deployment

the attacking side should commit its weapons against the targets
in the order 1,1,2,2,2,1,1,3.

The deployment d given by

Sd(l,l)_ q1 d(2) 3
q _2 qT21

2 d(1,2) 1 q d(2,2) u 1

d(l,3) 1

q d(,4) I

also satisfies (5.25) and (5.26), and has interceptor require-
ment I(d) - 10.608. The Prim-Read deployment d* with p(d*,l)ao

4 and p(d*,2) - 2 has interceptor requirement I(d*) - 17.348.

2) In general, uniform deployments such as that defined by
(4.18) do not satisfy the target defense principle. Suppose,
for example, that T - 4 with v(l) - 8, v(2) - 4, v(3) - 2 and

v(4) - 1. If targets 1 and 2 were to be defended, the Prim-
Read deployment d* chosen in accordance with Definition (5.4)
would have p(d*,].) - 4 and p(d*,2) - 2, with interceptor require-
ment I(d*) - 17.348. A uniform defense for target I for 4 shots
(i.e., equal numbers of interceptors deployed against each of the
first four attacking weapons, along the lines of (4,18)), and of

target 2 for 2 shots, would lead the optimal order of allocation
of attacking weapons among the targets to be l,2,3,l,4,2,1,2,1,l.
It is then immediate that the target defense principle is
violated.

3) In the strictest sense, the assumption under which

Theorems (5.17) and (5.22) are proved, namely that v(J)/v(30 +l)
be an integer for each J : j0< is weaker than the assumption (5.3).

There do exist choices of target values and of Jo for which
the weaker assumption on only the ratios v(j)/v(j 0 +l) holds,
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but (5.3) fails. However, validity of the weaker assumption

for all J 0 implies that of (5.3).

C. ADDITIONAL PROPERTIES

In Theorem (5.17) it was shown that provided that

Jo
(5.27) A <

the Prim-Read deployment d* minimizes expected target value

destroyed by an optimized allocation of A attacking weapons,

assuming that the target defense principle is satisfied. The

question of whether d* is similarly optimal when (5.27) fails

is resolved in this Section: not only is d* not optimal but

there even exists a deployment d such that

V(dsi) < V(dmoi)

for all i such that

Jo Jo
(5.28) 1 n(J) < i <. E n(J) + (T-Jo)

J-u J-1

which uses no more interceptors than the Prim-Read deployment

d*, and which satisfies the target defense principle. Of

course, d will defend more targets than does the Prim-Read

deployment d*. For a discussion and interpretation of the

condition (5.28) the reader is referred to the discussion that

follows the proof of Theorem (5.32).

The optimization problem we consider in this Section is,

therefore,

(5.29) minimize V(d,A)

s.t. I(d) < I(d*)

(5.30) v(J)p(d,J,i) > v(J')
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Where the constraint (5.30) is to hold for 1 - I, ... , p(d,J)

whenever p(d,J) > 2 and p(d,J') - 1. Here (5.30) represents

the target defense principle: the expected yield from an

attacking weapon directed at a defended target that is not yet

destroyed with certainty exceeds the value of every undefended

target. It is further assumed that J0 is fixed and that A satis-

fies (5.28).

The following Example illustrates nonoptimality of the

Prim-Read deployment d* for the problem (5.29) in a specific

case. Thereafter, nonoptimality in general will be demonstrated.

(5.31) EXAMPLE. Assume that T w 4 and that v(1) - 8, v(2) . 4,

v(3) - 2, v(4) - 1. For J-0 2, the total of the Prim-nead

prices is n(l) + n(2) - 6. For A - 7 we have

V(d*,7) - 14,

where d* is the Prim-Read deployment. The deployment d defined
by

Sqd(1) q d(2,1) 1 q d(3,l) Iqd ql) "2 q _

d(1,2) 1 d(2,2) q 1 d(3,2) . ,
q qq

d(1,3) qd(2,3)
q q3- q =

then satisfies

E qd(JiZ) 1

T1 d*(JZ)J, z qd

from which we infer that I(d) a I(d*). Further, the target

defense principle is satisfied by d since

8
v(l)p(d,l,j) - > 1 - v(4) , jwl,23
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and

v(2)p(d,2,l) - 2 > v(4)

and also

v(2)p(d,2,2) - v(2)p(d,2,3.)

- v(3)p(d,3,l)

- v(3)p(d,3,2)

*V(14)

Finally, it is immediate that V(d,7) = 13 < V(d*9,7) and

therefore d* is not an optimal solution to (5.29) for A - 7.

The following result shows that in general the Prim-Read

deployment d* is not an optimal solution to (5.29) when (5.28)

holds, and actually shows more: we explicitly construct a

deployment d such that V(d,A) < V(d*,A) for all A satis-

fying (5.28).

(5.32) THEOREM. Let J0 be fixed and let d' be the Prim-Read

deployment given by (5.8); assume that (5.3) holds. Then there

exists a deployment d such that:

a) d satisfies the target defense principle in the form

(5.30);

b) I(d) - 1(d*);

c) V(d,A) < V(d*,A) for all A such t'iat

J0 J0
(5.33) • n(J) < A < [ n(J + CT-J 0 I

PROOF. Recall that

n(J) - v(J)/v(J 0 +l)
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and, from the assumption (5..3), that

v(j 0 +l) a m(J 0+l)v(J0 +2)

Note also that the requirement 1(d) - I(d*) is equivalent toJo
( 5 . 3 4) n qad( ,a) - 1 qd Q It (i/n(j))

LIZ Jul

The deployment d will defend targets 1, ... , J0 + I and

is defined by means of the following equalities:
m(J 0 +l) - 1qd(J 0 +l~l) -. ( 0 l

m(jo+l)

qd(J 0 +l, 2 ) n 1

d(J,R,) qd*(J ,J)q=q , = , . , O

qd(ll) I m(J 0 +l)

and

(5.35) qd(,) q d*(l, .

It is immediate that (5.34) is satisfied. Provided that

A. the target defense principle be satisfied, it will then be

true that

I+1

v , n(j + v(J) - 2

Jul: J-i
Jul

which verifies that
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(5.36) V(dA) - V(d*,A) - 1

JO
for A-(,j n(J)) +1. The forms of the deployments d* and d

then imply that (5.36) holds for all A satisfying (5.33).

Therefore, to complete the proof of the Theorem, it suffices

to show that d satisfies the target defense principle (5.30).

For target J 0 + 1 the definition of d implies that

v(Jo+l)p(dJ 0 +ll) - v(j 0 +l) - v(J 0 +2)

and

v(J 0 +l)p(d,J0 +',2) w v(j 0 +2)

Keeping in mind that target JO + 2 is now the most valuable unde-

fended target and that, by virtue of (5.2) and (5.3), v(J 0 +l) u

m(J 0 +l)v(J0 +2) with m(J 0 +l) > 2, we infer from tbo two pre-

ceding expressions that (5.30) holds for J m J0 + 1.

If 2 < ý <_ J0 then the definitions of d and of the Prim-

Read deployment d* yield

v(J)p(d,jZ) - v(Jo+i) > v(jo+2)

for Z - 1, ... , n(J), which verifies the target defense prin-

ciple for these values of J.

It is slightly less straightforward to verify that the
target defense principle holds for J m 1. To begin on this,

for Z - 1 we have

•,... 1) d(l "l)v(l)p(d,l,l) - v(l)q ,

., m(J 0 +l)

n in (J 0 +l)=

.V(Jo0+) m(Jo0 +1)
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> V(J 0 +1)

> V(J 0 +2)

which gives (5.30) for j - Z - 1. The expected target value
that survives the first attacking weapon directed at target

1 is

n(1)[m(Jo+1)-l] - m(Jo+1)

v(l)(l-qd(l 'l)) - v(1) n(l)[ m(j 0+l)-1 )
, n(1) [m(J 0+l)-l]

Together with (5.35) this expression gives

I n(i)[m(j 0+l)-l] - m(J 0 +l)
v(1)p(d,l,Z) - n-ZyT, v(1) n.(.1)[.cjo+l).•l

M QOl n(1) [m(j 0+i )'i]'m(Jo0+) vI o2
-[n(i)_i][m(J0+l)_l]

which is valid for k - 2, ... , n(l). Therefore, it now

suffices to prove that

(5.37) 1 < m(J 0 +l) n( 1)]m( J 0+l)-l] - m(j .+.)

Jn(o)-1]Lm( +[)-1]

"m(j+) - 1 m(J0o+l) - n~l)

The assumptions of the Theorem imply that n(l) > 2, which gives

nr(1) < 3
n(1)-i - 2

If m(Jo+l) > 3, it is then clear that the final expression in

(5.37) exceeds one; if m(Jo+l) w 2 this expression becomes

2 [2 n(l)l
,2-1

This completes the proof of Theorem (5.32).
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In the condition (5.33), the leftmost term is the total

of the Prim-Read prices of the defended targets, while the

rightmost term is the total of the Prim-Read prices of all of

the targets. We have already demonstrated that the Prim-Read

deployment d* is optimal for the problem (5.29) if

JO JO
A Z Z n(j); for A > I n(J) + (T-J 0 ) the difficulties in

Jul Jul

obtaining a deployment better than the Prim-Read deployment

are associated with having to satisfy the target defense prin-

ciple. The content of Theorem (5.32) is that by defending one

additional target against (exactly) one attacking weapon, one

can construct a deployment d that is uniformly better than the

Prim-Read deployment for values of A satisfying (5.33). Further-

more, this deployment uses the same number of interceptors and

also satisfies the target defense principle. Here is a numeri-

cal illustration.

(5.38) EXAMPLE. Assume that T - 4, v(l) - 8, v(2) - 4,

v(3) - 2, v(4) w 1 and J 0 * 2. The construction given in

Theorem (5.32) then yields the deployment d defined by

qd(ll). d qd(2,0.) 1 q d(3,1) 1

qd(l,2) I 2 qd(2,2) * 1 qd( 3 ,2) - 13

qd(l,3) 1

qd(l104)

JO Jo
For this example [ n(J) - 6 and n(J) + (T-J 8 and

from the easily checked facts that
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v(1)p(d,1,1) = 4

v(l)p(d,l,Z) 4 Z-2,3,43

v(2)p(d,2st) - 2 s )1,2,

and

V(3)p(d,3,Z) - 1 , 2.1,2,

it is seen that V(d,A) - V(d*,A) - 1 for A - 7 and A * 8, as

predicted by Theorem (5.32). In Figure 8 we present a graphical

comparison of the payoff functions V(d*,.) and V(d,.).

i | p 1 1. 1
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D. CHAPTER SUMMARY

In this Chapter we discuss in detail the consequences of

the following two-part target defense principle:

1) Targets must be defended in order of decreasing value.

2) The expected target value destroyed by an attacking

weapon directed at an initially defended target, even allowing

for possible destruction of the target by another (earlier)

attacking weapon, must always be at least as great as the value

of every initially undefended target.

We discuss optimality properties of Prim-Read deployments under

the target defense principle and also some important optimiza-

tion problems for which Prim-Read deployments are not optimal

solutions.

The beginning of the Section presents a general discussion

of the target defense problem and describes three ways whereby

Prim-Read deployments may be constructed. This discussion

parallels and extends that in Chapter I,A; the reader is

referred to both discussions for further details concerning

the heuristic Justification for Prim-Read deployments.

In the principal mathematical results of the Chapter

several optimality properties and one important nonoptimality

property of Prim-Read deployments are demonstrated. Specifi-

cally, those main results are the following.

1) Theorem (5.7), which states that, subject to the

restriction represented by' (5.3), if targets 1, ... , J0 are

defended, the appropriate Prim-Read deployment d* is given by

d'(JX) lo- (n( )-Z+]")
log q

for each J and Z - 1, ... , n(j), where
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n(J) =

Recall that targets are labeled in order of decreasing value.
The associated interceptor requirement is

I -i- log v
log q j V(1o+1)J

2) Theorem (5.9), which asserts that if targets J, ... , J0
are defended, then the Prim-Read deployment d* is the unique
solution to the optimization problem

minimize mkx V(d,r)
l<r<p (d*) r

s.t. I(d) < I(d#) .

That is, of deployments requiring no more interceptors than the
Prim-Read deployment d*, the latter uniquely minimizes the maxi-
mum target value destroyed per attacking weapon committed, even

when the allocation of attacking weapons is optimized against
the chosen defensive deployment.

3) Theorem (5.17), which is one of the most important
results in the paper, and states that if targets 1, ... , J0

are defended and if

A < Ev(j)/v(i 0 +l)1 ,J-1

then the corresponding Prim-Read deployment d* (given by (5.8))
is a solution to the optimization problem

minimize V(d,A)
s.t. I(d)< I(d*)

v(J)p(d,J,i) > v(J0+l), lSj<J<J
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Furthermore, provided that A > n(1) - 1 C [v(l)./v(j 0 +l)] 1 1, the

Prim-Read deployment d* is the unique solution to the stated opti-

mization problem. That is, if the number of attacking weapons is

at most that required to destroy all of the defended targets, then

among all deployments satisfying the target defense princip.e, the

Prim-Read deployment minimizes the expected target value destroyed

by an allocation of attacking weapons that is optimized against

the chosen defensive deployment. If the number of attacking wea-

pons is sufficient to exhaust the defenses at every individual

target (although not necessarily sufficient to destroy the then

undefended target), the Prim-Read deployment uniquely minimizes

the expected target value destroyed.

This is the one instance where it is shown that Prim-Read

deployments minimize target value destroyed as well as target

value destroyed per attacking weapon committed , although only

relative to deployments satisfying the target defense principle.

4) Theorem (5.22), which states that if targets 1, ... ,J

are to be defended, then the corresponding Prim-Read deployment

d* is the unique solution to the optimization problem

J0
maximize p p(d,J)

Jul

s.t. v(J)p(d,J,i) > v(J 0 +l) , lJc:jJ 0 ;l<i<p(dJ).

The interpretation here is that of all deployments that defend

targets 1, ... , J 0 in a manner satisfying the target defense

principle, the Prim-Read deployment d* uniquely maximizes the

number of attacking weapons that must be committed in order to

destroy all of the defended targets.

5) Theorem (5.32), another very important result, which

demonstrates that if d1 is the Prim-Read deployment correspond-

ing to defense of targets l,... 10, then there exists a deploy-

ment d, which is computed explicitly, such that
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a) d satisfies the target defense principle;

b) I(d) - I(d*)

c) V(d,A) < V(d*,A) for all values of A satisfying

- J4 <A < 1 &al +
i -V{j-eIT - 1j 7v-ji0+l)J+ 0

The content of this Theorem is that if A satisfies the restric-

tions above, then the Prim-Read deployment d* is not a solution
to the optimization problem

minimize V(d,A)

s.t. I(d) < I(d*)

v(j)p(d,J,i) I v(J') if p(dJ)>l
and p(dj')-l.

The Prim-Read deployment, even among deployments satisfying the

target defense principle and not requiring more interceptors,

does not minimize expected target value destroyed by an opti-

mized attack when the attacking side commits more weapons than

are necessary to destroy all of the defended targets.

Although the results listed above were all derived subJ•-t

to the hypothesis (5.3) that v(J)/v(J+l) be an integer greater

than or equal to 2 for each J, they all remain approximately

valid without this restriction.

Perhaps the most important conclusion to be drawn from the

entire paper is obtained by combining the implications of

* Theorems (5.17) and (5.32). Suppose that, given its interceptor

resources and the targets that are candidates to be defended,

the defending side elects to implement a Prim-Read deployment.

Based on the supply of available interceptors, it will do so by,

QD for some J0, defending targets 1, ... , Jo using the Prim-Read
deployment d* given by (5.8); this choice leads to the payoff

function V(d*,.) illustrated in Figure 9.
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Also as shown in Figure 9, if A is the number of weapons
committed by the attacking side, then depending on the value

of A, the Prim-Read deployment may or may not, among deploy-

ments that require the same number of interceptors and satisfy

the target defense principle, minimize expected target value

destroyed. Specifically,

1) If 0 < A < Am, where Am a £v(l)/v(Jo+l)' - 1, which is

maximum number of weapons against which any target is defended,

then the Prim-Read deployment minimizes target value destroyed

by an attack of size A optimized against the chosen defensive

deployment, but not uniquely.

2) If' A < A ! Ad) where

J0 výJ) JO

Ad I • Jo+l4  I " Q(d01J) ,,
d Jul 0u

which is the number of attacking weapons required to destroy
all of the defended targets, then the Prim-Read deployment

uniquely minimizes expected target value destroyed by an

optimized allocation of A attacking weapons.

3) If Ad < A < At, where

At - V[Jo +l7 + [T- 0J - p T (dJ)[ Ju Jul

is the total of the Prim-Read prices of all targets, then the

Prim-Read deployment does not minimize expected target value

(. destroyed by an optimized allocation of attacking weapons.

Indeed, there exists a deployment d using the same number of

interceptors and satisfying the target defense principle such

that "(d,A) < V(d*,A) for all A in the interval (Ad,At .

2.07
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4) If A > At, then the Prim-Read deployment does not mini-

mize expected target value destroyed by A optimally allocated

attacking weapons, but there is no other deployment that is

uniformly better than the Prim-Read deployment for all A > At.

, .1.
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Chapter VI

ADDITIONAL MIN-MAX OPTIMALITY PROPERTIES

A. INTRODUCTION

Chapters IV and V developed optimality and nonoptimality

properties of Prim-Read deployments for optimization problems

of the general form

T [j a(') dI,
(6.1) minimize max • v(J) it *-

a J-l L Z-l ,

where the deployment d, and also the allocation a of attacking

weapons, satisfy certain constraints, one of which, for example,

is the target defense principle underlying all of Chapter V. In

this Chapter we treat one additional class of problems of the

form (6.1), in which we assume that target prices remain fixed

at their Prim-Read levels, and that

A T T
a- I a(j) Z i v(J)

Jul Jul

where i is treated as a parameter of the problem. We further

assume that we are in the situation of Chapter IV, rather than

that of Chapter V, and that k - 1; therefore, all targets except

those of unit value are defended. Consequently the results of

this Chapter apply, at most, indirectly to the nationwide

defense problem treated in Chapter V, but may apply to other

situations. Regardless of direct applicability, of course,

the results are of interest as further properties of Prim-Read

deployments.
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Since we do not assume the target defense principle to

hold, the results of this Chapter are complementary to those U
in Chapter V. Our main result here asserts that, of deployments

with the same interceptor requirement, the Prim-Read deployment

d* minimizes target value destroyed--barring a small number of

known exceptional cases--if and only if there is a set of tar- (

gets whose prices sum to i. An empirical observation, for which

we have indirect but also inconclusive theoretical support, is

that in those cases in which d* is not optimal, the deviation

from optimality is nearly negligible.

The specific class of optimization problems to be con.-

sidered is

(6.2) minimize V(d,i)

s.t. 1(d) < t(d*)

p(d,J) < v(j) , j-l,...,T ,

where i < I v(J) is fixed, and where d* is the Prim-Read deploy-
ment with scaling parameter k = 1, as given by (2.14). That is,

for each j

d*(ji) log(v(j)-i+l), i-l,. ,vlog q

Recall also that

V(d,i) w max 2 v(J) 1- n 11 qd(J ))]

a:a-i J-l L -i ;

A generalization of the main result of this Chapter (which is

"Theorem (6.13)) asserts that the Prim-Read deployment d* is an

optimal solution to (6.2) if and only if there is JOC{I,...,T)

such that

i - X v(J) - } p(d*,J)
JVJO jfjo
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In words, d* is an optimal solution to (6.2) for a given value
uf i if and only if there is a subset of targets that can be
exactly destroyed by i attacking weapons.

Of the problems treated in earlier Chapters, the problem

S(4.24) is most closely related to (6.2). The difference between

them is that in (6.2) target prices are fixed at Prim-Read

levels, whereas in (4.24) they are not. The most important
difference between (6.2) and the similar problems (5.18) and
(5.29) treated in Chapter V is that in the latter the target
defense principle is assumed to be satisfied. When the target
defense principle holds, then by Theorem (5.17) the Prim-Read
deployment minimizes V(d,i) for all i < Z v(J).

The problem (6.2) is of interest whether one envisions the
defending side's choosing a Prim-Read deployment in order to

make efficient use of a supply of available interceptors or in
order to force exhaustion of a particular stockpile of attack-

ing weapons in order to destroy the targets. In either case
(because of faulty decision-making processes or incorrect esti-
mates by the defending side), the number of attacking weapons

committed might not be large enough to destroy all of the
defended targets, so it is desirable to understand properties

of Prim-Read deployments in such contingencies.

To avoid overburdening (the author and) the reader with
mathematics at the expense of concepts and their implications,

we restrict our attention for the remainder of this Chapter to
the case of two targets, which is sufficiently general to illus-
trate the range of complications when T > 3, but sufficiently
simple to be comprehensible and computationally tractable.

Therefore,

j V(di) - max v(J) 2 l-q

a(l)+a(2)ui Jl Xi)
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B. EXAMPLES

Before stating the main result of this Chapter we give some
illustrative examples.

(6.3) EXAMPLE. Suppose that v(l) - 3 and v(2) a 1. If we put
M qd(lil)" • - qd(l 2 )" then the constraint 1(d) n I(d*)

becomes

aa a 1/6.

By direct calculation, V(d,1) - max{3a,l} > 1; therefore
the Prim-Read deployment d* does solve (6.2) for i - 1.

Suppose now that i w 2. Then

V(d,2) - max(3[l-(l- i)(l-8)],3r41}.

Using elementary algebra one can show that if

V(d,2) < V(d*,2) - 2 ,

then a 1/3, 8 a 1/2, which implies that d - d* and hence that

d* solves (6.2) for i 2. This turns out to be an exception

to the general case, since 2 weapons cannot exactly destroy

either one of the targets or both targets.

That the Prim-Read deployment d* solves (6.2) for i - 3

and i w 4 fcllows by the same reasoning used when i a 1.

The next Example gives an illustration of a case when the

Prim-Read deployment d* does not solve (6.2).

(6.4) EXAMPLE. Suppose that v(l) - 4 and v(2) - 2 and

observe that the constraint I(d) - I(d*) is equivalent to

(6.5) qd(11) qd(ls2)q (1,3) d(2,1) -1/48.

112



Since

V(d,1) -max{L4qd 1)2qd(~)

it is evident that b taking q d(l4l) greater than but nearly
equal to 118, q greater than but nearly equal to 1/6,
and qd l 12 qd13 less than but nearly equal to 1, all in
such a manner that (6.5) remain satisfied, one can force
V(d~l) < 1. - V(d*,l), so-that the Prim-Read deployment does

not solve (6.2) for i. n 1.

That the Prim-Read deployment d* satisfies (6.2) for
i. a 2, as well as for i w ~4 and ± 6, is obvious.

Consider now the case i - 3, in which we have

V~d) mxjdl(l-qd11) ld(132) lq d(1,3

41fl(l-q d()l)) )(2. q d(102)) + 2q d(2ý1)

4q d(lol) +2

since the attacking side can allocate 3, 2 or 1 weapons to the
more valuable target 1.. To find d such that V(d.3) < V(d*,3)
we must satisfy the three inequalities

(6.7) 4[~l - 1 (l-qd )] + 2qd 2 ) < 3

and

(6.8) 14q + 2 <3

We were able to find such values of the d(j,Z) by a perturbation
g argument that also forms the basis for the omitted proof of

Theorem (6.13).

113



The underlying reasoning is the following. The Prim-Read
deployment d* satisfies (6.6) - (6.8) as equalities. Consider
a perturbed deployment d that can be written in the form

q d(1,91) =aq d*(121) a CL/il

qd(1,2) 0 aqd#(122) - /

q d(ls3 ) M yq d*( 1,3) w y/2

qd(201) -qd*( 2,1) 6/

where in order to satisfy (6.5) we assume that a~yd -1, which

we may use to eliminate y from the equations (6.6) -(6.8).

Now make a first-order Taylor series expansion (in a,
and 8) of the left-hand sides of the equations (6.6) - (6.8).
The appropriate first partial derivatives evaluated at the Prim-

Read point a 08 1 are

a(.) 2 9(6.6) U-

a(6.7) 2 a(6 1( 7)*

a(.) 1 a(6.8) 0a(6.8) 0

By Taylor's theorem, of. [16], we can satisfy (6.6) -(6.8) by
V choosing perturbations Act, A$3, 66 sufficiently close to zero

and such that

(6.9) - Aa - 1AB-d<0
32

(6ioQ + Aa + 66 < 0

(6.11) Aca < 0;
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we then take a w 1 + tA, 8- + A, 6=- 1 + Ad.

By experiment, the choices &a - - .005, A8 - - .00125, and

Ad * .004167 catisfy (6.9) - (6.11) and lead to the values

d(l,1) = .24875

qd(1,2) - .332917

qd(l,3) = .50105
qd(21) - .5020835

which do satisfy (6.6) - (6.8). Consequently, the Prim-Read

deployment d* does not solve (6.2) when i. - 3. One possible

reason is that the alternative deployment d is able to leave

the largest single payoff to the (irrelevant when i a 3) fourth

attacking weapon.

For i = 5 we obtain

V(d,5) - max 4+2q d(29l) l 4 ( + 2

Because V(d,5) depends symmetrically on qd(l,1) q d(l,2)'and

q d(13), if we take

qd(ll) a qd(l,2) . qd(l,3) . .34902

d(2,1)
q - .49,

then we have V(d,5) < 5 - V(d*,5).

To summarize this Example, the Prim-Read deployment d* is

an optimal solution to (6.2) If and only if i - 2, 4 or 6, i.e.,

if and only if some subset of targets can be exactly destroyed

by i attacking weapons.

Similar effects arise in the case of two targets with equal

values.
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(6.12) EXAMPLE. Suppose that v(1) a v(2) - 3. By symmetry we

may restrict attention to deployments d for which

d(l,l) qd(291)
q q

qd(12) d(2,2) ,

where ao - d(l,l)qq* d*(1,2) d*(2,1) qd*(2,2) - 1/6.

Since V(d,l) - 3a, it is possible to have V(d,l) < 1, so

the Prim-Read deployment d* is not an optimal solution to (6.2)

when i w 1.

When i u 2 another exceptional case arises: even though

two attacking weapons cannot exactly destroy either target, the

Prim-Read deployment is an optimal solution to (6.2) when i a 2.

To see this, note that

•V(d,2) - max{6a,3a+3(l-a)O} 4

If V(d,2) < 2 then on the one hand a < 1/3, while on the other

hand the inequality

3a + 3(l-a)a < 2

implies that 1/3 < a < 1/2. Therefore a a 1/3, 0 - 1/2 and

d - d*.

For i - 3 and i - 6 it is evident that the Prim-Read deploy-

ment is an optimal solution to (6.2). The case i = 4 is another

exceptional case: the Prim-Read deployment can be shown to be

the unique optimal solution to (6.2), despite the impossibility

of exactly destroying a subset of the targets with i attacking

"weapons. Finally, for i - 5, a symmetry argument analogous to

that used in Example (6. 4 ) for the case i - 5 can be used to

show that the Prim-Read deployment is not an optimal solution

to (6.2)
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C. MAIN RESULT

We now present the main mathematical result of this
Chapter, which states that--except for the anomalous cases
noted in Examples (6.3) and (6.12) above--the Prim-Read
deployment d* is an optimal solution to (6.2), for a given
value of i, if and only if one or the other or both targets
can be exactly destroyed by i attacking weapons. By the
latter phrase we mean that i - v(l), i - v(2) or i - v(l)
+ v(2); i.e., i is the sum of the prices of a subset of
the targets.

(6.13) THEOREM. Suppose that T w 2 and that v(1) < v(2).
Then the Prim-Read deployment d* is an optimal solution to
(6.2), that is,

V(d*,i) = min{V(d,i): I(d) - I(d*),p(d) - p(d')}

if and only if one of the following conditions is satisfied:

a) v(2) < 2;

b) v(l) - v(2) - 3 and i - 2 or i - 4;

c) v(l) 1 1, v(2) - 3 and i - 2;

d) i -v();

e) i v(2);

f) i - v(l) + v(2).

The first three conditions are the exceptional cases noted
in Examples (6.3) and (6.12), while the latter three conditions
state that I attacking weapons can exactly destroy some subset
of the set of targets.

The proof of Theorem (6.13) is lengthy, largely technical,
, O and rather unenlightening, so we have omitted it from this

paper. Its essential argument is a generalization of the
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perturbation method used in the analysis of Example (6.4) above.
The technical difficulties arise in having to prove that the
perturbed deployment d satisfies V(d,i) < i - V(d*,i), rather

than being able to verify the inequality numerically, as was
permissible in the Example. An analogous result holds for
T > 3 but it also is omitted.

As was done in Examples (3.15) and (4.16) in earlier
Chapters, it is of interest to study the extent by which the
Prim-Read deployment d# fails to be optimal for the problem
(6.2) when d9 is in fact not optimal. Because we have been

unable to solve (6.2) in closed form when the Prim-Read deploy-
ment is not the optimal solution, we do not have rigorously
derived bounds on the possible deviation from optimality. How-

ever, the techniques used in Example (6.4) and in the proof of
Theorem (6.13)--and here the reader is asked to accept on faith
the fact that more simple-minded, straightforward approaches
were unsuccessful--strongly suggest that the deviation is
minimal. For all of the examples we have analyzed, including
several that are not included here, if d is found such that

Vdi < V(d*,i) ,

then both the absolute deviation

V(d*,i) - V(ai)

and the (more Lppropriate) relative deviation

V~dtli) - V(di)
S~V(d•,i)

are quite small. A theoretical investigation of these devia-
tions might be pursued by examination of second derivatives
corresponding to the first derivatives that were calculated in
Example (6.4). In view of the fact that (6.2) is not the most
important optimization problem treated in this paper, we have
not performed such an investigation.
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"D. CHAPTER SUMMARY

This Chapter describes optimality and nonoptimality proper-

ties of Prim-Read deployments, in the multiple target case, for

a particular class of optimization problems. In these problems,

the objective function is expected target value destroyed by an
optimized allocation of attacking weapons and both the defending

side's resources and the individual target prices (not just the

total of all target prices) are fixed at their Prim-Read levels.
The attacking side's resources are treated parametrically and

are at most the number of weapons needed to destroy all of the
targets. It is assumed that only targets of unit value are

left undefended. The target defense principle is not assumed
to be satisfied.

There is only one mathematical result in this Chapter,
Theorem (6.13), which when generalized, states that the Prim-

Read deployment d* (with scaling parameter k 1 1) is a solution

to the optimization problem

minimize V(d,i)

s.t. 1(d) - I(d*)

p(d,j) - p(d*,J) - v(j)

if and only if one of a small number of known exceptional cases
holds (which can happen only for small values of i) or there is

a set J0 C {I,...,T} such that

i - p p(d*,J) - v(j)

JJo JJo

That is, save in the exceptional cases, the Prim-Read deployment,

among all deployments with the same target prices and interceptor
requirement, minimizes expected target value destroyed by an attack
consisting of i optimally allocated attacking weapons if and only

l oif there is a subset of targets whose prices sum to i. When there
are many targets with relatively low individual values, it becomes

fairly likely that the latter conditions will be satisfied.
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Chapter VII

VARIATIONS

In this Chapter we describe how some of the initial assump-
tions imposed in (1.1) and (1.2) can be weakened in order to
represent certain phenomena of physical interest and importance.
Specifically, we show how to extend the basic model specified by
(1.1) and (1.2) to permit target dependent intercept probabilities,
initially unreliable attacking weapons that may malfunction before
reaching the interceptor defense, terminally unreliable attack-
ing weapons that may fail to damage a target despite having
successfully penetrated the interceptor defense, and alterna-
tive attrition structures. The latter, for example, may not
represent an engagement of an attacking weapon by n interceptors
simply as n independent, one-on-one engagements.

To keep the size of this paper finite, we have only derived
the forms of appropriately defined Prim-Read deployments and pre-

sented interpretive remarks concerning such deployments. Many
of the optimality and nonoptimality results of Chapters IV, V,
and VI extend with essentially no difficulty to the cases of
target dependent intercept probabilities and unreliable attack-
ing weapons (of both kinds). Validity of these results for
alternative attrition structures, however, is open to doubt and
cannot be resolved without further research (which might have
to be done on a case-by-case basis).

We wish to emphasize that the principal structural assump-
tions put forth in Chapter I remain in effect. Attacking weapons
directed at each target arrive sequentially in time, interactions

involving different attacking weapons are probabilistically
independent, and neither attacking weapons nor interd~ptors can
be adaptively reassigned during the course of an attack. We
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have not examined possible ways of weakening these major

assumptions.

A. TARGET DEPENDENT INTERCEPT PROBABILITIES

It is a simple matter to modify the basic model of (1.2) to
allow target dependent intercept probabilities. This is desirable

in physical terms since different targets might be defended by
different kinds of interceptors, or the same kind of interceptors

may have differing effectiveness at different targets because,

for example, of differences in warning time or local environmen-

tal conditions. Introducing target dependent intercept proba-

bilities also allows representation of the case where different

types of attacking weapons are directed at different targets,

provided that all weapons directed at a given target be of the

same type. Similarly, there may be different types of inter-

ceptors at different targets, but all interceptors at a given

target must be of the same type.

We assume that the Assumptions (1.2) are satisfied, except

that the one-on-one penetration probability at target J is now

some q , (0,1). By analogy with Definition (2.11), a deploy-

ment d' is said to be a Prim-Read deployment with scaling factor

k, where k is a positive integer, provided that

(7.1) v(j)p(d*,Ji) - 1-l,
iml,...,p(d*,j)•

Note that (7.1) and (2.12) are formally identical, but that now

p(dji) = [ -q ) , .

The counterpart of Theorem (2.13) is the following result.

(7.2) THEOREM. For each k > 1 there exists a unique Prim-Read

deployment d* with scaling factor k, given by
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(7.3) d*(J,i) - -log(kv(j)-i+l)
log qj

The close resemblance between (7.3) and ( 2 . 1 4 ) is, of course,

not coincidental. From Theorem (7.2) the following consequences

are immediate.

COROLLARY. If d* is the Prim-Read deployment with scaling

factor k, then

p(d*,J) a kv(J) ,

and

1(d T loi(kv(j))4Il
J log qj

Since the proofs of the Theorem and its Corollary are

virtually the same as -osoae of Theorem (2.13) and its Corollaries
(2.15) and (2.17), we have omitted them.

As previously remarked, many of the results of Chapters IV,

V and VI extend--with virtually only notational changes--to the

case of target dependent intercept probabilities.

B. POSSIBLY UNRELIABLE ATTACKING WEAPONS

In this Chapter we show how to represent two forms of
possible unreliability of attacking weapons, which we call

initial and terminal unreliability, respectively. Initial

unreliability accounts for the possibility that some attacking

weapons may be launched but never arrive at the interceptor
defense of their intended targets, so that no interceptors need

to be deployed against them. To be slightly more precise, it

0 (may develop during the course of an actual attack that no inter-
ceptors have to be deployed against initially unreliable attack-
ing weapons, but the defending side does not know in advance
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which attacking weapons, if any, will be unreliable and must con-

tend with the possibility that none will be. Initial unreliability

might result, for example, from an unsuccessful launch, an extreme

navigational error, or a distant defense.

Terminal'unreliability is meant to represent the possibility

that an attacking weapon may penetrate the defense of interceptors

deployed against it and yet fail to destroy the target. For

example, there may be a local (but critical) navigational error,

a warhead may fail to detonate, or the target may have a single,

close-in defense.

We will deal first with initial unreliability, which is
the simpler of the two forms. For simplicity we consider mainly

the single target case, which nonetheless rather clearly illumi-

nates the problem. To represent initial unreliability we intro-

duce the following hypothesis.

(7.4) ASSUMPTION. Each attacking weapon fails to arrive at the

interceptor screen of the target at which it is directed with

probability l-p, where 0 < p < 1. Initial failures of different

weapons are mutually independent and independent of the entire

attrition/penetration process at all targets. No interceptors

are deployed against initially unreliable attacking weapons.

Except for this modification, the original Assumptions (1.1),

(1.2) remain in force.

In what follows, although we continue to call

p(d) - min{i:d(i) - 01

the price imposed by a deployment d, we wish the reader to be

aware that commitment (i.e., launching) of p(d) attacking weapons
no longer ensures destruction of the target (unless p - 1). From

the defending side's point of view, however, the interpretation

remains nearly unchanged: p(d) - 1 is the number of attacking
weapons reaching the target vicinity against which interceptors
are actually deployed.
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We now say that a deployment d* is a Prim-Read deployment

with price p if p(d*) - p and

p(d*,l) - p(d*,2) - ... p(d*,p(d*))

The difference between this condition and Z2.5) is that while

the marginal contributions p(d*,l), ... , p(d*,p(d*)) remain

equal to one another, they are no longer assumed to be equal to

1/p and their sum will now be less than one. In fact, as

Theorem (7.5) below demonstrates, each is equal to p/p. Let us'

emphasize, at this point, that p(d*,i) is the probability that

the target is destroyed by the ith attacking weapon Zaunahed

at it.

Theorem (7.5) also settles ahother question of interest.

Recall that a Prim-Read deployment can be thought of as being

either as strong as possible subject to a limited supply of'

available interceptors or as strong as necessary to force com-

mitment of a prescribed number A0 of attacking weapons in order

to destroy the target. Theorem (7.5) below shows that, even

when there is possible initial unreliability, the Prim-Read

deployment is the same as when there is no initial unreliability

(i.e., is the same deployment given by (2.7)). There then

arises the question of the appropriate choice of the price p.

For the case of a deployment constrained by interceptor resources

it is clear that existence of initial unreliability should not

lead the defending side to change the price from that when p - 1.

What should be done by the defending side that attempts to force

full commitment of the stockpile of A0 attacking weapons is less

clear, but two principal possibilities emerge:

1) Choose p a A0 , the same choice as if p were equal

to one.

2) Since pA 0 is the expected number of attacking weapons

that are initially reliable (and against which interceptors

must be deployed), choose a Prim-Read deployment with p pA0 .

125

q......



The following result indicates rather decisively that the

defending side should elect the first of the two alternatives.

(7.5) THEOREM. For each integer p 1 1, there exists a Prim-

Read deployment d* with p(d*) - p, which is given by

d*(i) - - log('-i+i,)

log q

The associated payoff function is given by

(7.6) p(d*,i) - inl, ... , p,
P S'

. P-P (i X (1-P)i*l-k, i>p.

Recall that p(d*,i) is the probability that the target is

destroyed by the ith attacking weapon committed. This weapon

may fail in three ways to destroy the target: the target may

have already been destroyed, the weapon may be initially unreli-

able, or the weapon may be initially reliable but be destroyed

by the interceptors. Observe that when p - 1, (7.6) reduces to

(2.5). However, if p < I then p(d*,i) > 0 for all i and no

attack with finitely many weapons is certain to destroy the

target.

To understand the implications of (7.6) for the defending
side, we note that for i > p(d*) - p (and provided that p < 1)

we have

0 < 1i-l- <2.

P Z-0 P

and that the middle term (i.e., p(d*,i)) decreases to zero as

i ÷ •. If the attacking side is attempting to maximize target
value destroyed it would, as before, expend as many weapons as

possible. But if the attacking side is attempting, in the
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manner of Theorem (3.11), to maximize target value destroyed per
attacking weapon committed., it will expend p(d*) attacking wea-

pons. Therefore, of the choices p(d*) - A0 and p(d*) - pA0 , the

former is definitely better for the defending side.

To summarize, when there is initial unreliability, the

defending side should not modify the choice of target price

for a Prim-Read deployment.

In the case, as well, of multiple targets and initial

unreliability, no changes should be made by the defending side.

A Prim-Read deployment d' is defined by its satisfying an equali-

zation condition of the form

v(j)p(d',J,l) - v(j')p(d*,J',l)

a v(j')p(d*,j",2)

- v(J')p(d*,J',p(d*,J'))

for all j and J'. It is easily seen that--no matter what the

value of p--for each k the Prim-Read deployment d* with prices

p(d*,J) w kv(j), as given by (2.14), satisfies this condition.

The preceding discussion for the single target case therefore

applies also to the multiple target case.

The results above show that, regardless of the value of
the initial reliability p, the previously chosen Prim-Read

deployment should not be discarded in favor of the Prim-Read

deployment with price pA0 . However, this does not preclude

existence of some other deployment that is superior to the

original Prim-Read deployment.

The proof of Theorem (7.5), which is based on a straight-
thforward conditioning argument (the i attacking weapon committed

destroys the target if and only if some number X of the previous

i - 1 attacking weapons were initially reliable but none of these
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destroyed the target, the ith attacking weapon is initially

reliable and it penetrates the interceptor defense), is

omitted.

We proceed now to consider terminal unreliability, which is

introduced into the axiom structure of (1.1) and (1.2) by the

following hypothesis.

(7.7) ASSUMPTION. An unintercepted attacking weapon destroys

its intended target with probability p d [0,1]. Terminal unreli-

abilities of different attacking weapons are independent of one

another and of all other probabilistic aspects of the intercep-

tion processes.

When p w I we are in the case treated in Chapters II through

VI; assume now that there is no initial unreliability. The single

target case will be treated first.

As for the case of initial unreliability, one must correctly

interpret the price imposed by a deployment d. Destruction of

the target is not ensured by commitment of p(d) attacking. . .
weapons or even necessarily by penetration of the interceptor

defense by p(d) attacking weapons, but only by penetration of

P(d) terminally reliable attacking weapons. While one might

introduce an alternative terminology such as "defense level"

(although, strictly speaking, the defense level should p(d)-l),

we continue to use "price" with the same mathematical defini-

tion as above:

p(d.) • milni:d(i)O}.

In Definition (2.4), a Prim-Read deployment d* is defined

"by the equalization condition

p(d*,i) w

which, in particular, implies that
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p(d*)
(7.8) [ p(d*,i) I 2.

i-1

To obtain an analogous condition for the case of terminal unreli-
ability we equate the probabilities p(d*,l),...,p(d*,p(d*)) to

one another but not to 1/p(d*), as a consequence of which (7.8)

will no longer hold.

We remind that p(d,i) is the probability that the target is
destroyed by the ith attacking weapon launched at it.

(7.9) DEFINITION. A deployment d* is a Prim-Road depZoyment if

(7.10) p(d*,l) - p(d*,2) -.. p(d*,p(d')-l) - p(d*,p(d#))

The effect of (7.10) is to equalize the target value
destroyed by each attacking weapon against which there is a
defense with that by the first attacking weapon against which

there is no defense. It follows that

0 < p(d',i) < p(d*,p(d*))

for all i > p(d*), so that the cumulative payoff function P
defined by

i
P(d#,i) • p(d*,Z)

is of the form shown in Figure 10. For purposes of comparison

we have shown the payoff functions for p - pl' p M P2 < ýl and p - i
(the latter, of course, corresponds to no terminal unreliability).

The following result is analogous to Theorem (2.6) and may

be proved by similar methods.

(7.11) THEOREM. For each integer p > 1 there exists a Prim-

Read deployment d* with p(d*) a P, which is given by

129
S



,.

P- 0 10 .....

p(d*)
11. J'15 14

Figure 10. PRIM-READ PAYOFF FUNCTIONS IN THE
CASE OF TERMINAL UNRELIABILITY

(7.12) d*(i) log(l+(p-i)p) jul, ,p
"log q

It follows from (7.12) that the interceptor requirementis

(7.13) I(d*) g log(1+(P-i-))
iog )

and that

(7.14) P(d*,p) - (

which is the probability of the target's being destroyed by one
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or the attacking weapons against which there is a defense or the

first attacking weapon against which there is no defense. The

reader will note that if p - 1, (7.12), (7.13) and (7.14) reduce

to previously derived results. As one would expect, it is also

true that P(d*,p(d*)) increases as 3 does.

We turn now to terminal unreliability in the multiple target

case. As in Chapters II and IV there will be a scaling parameter

that is a choice variable for the defending side. However,

there now arise complications even with existence of Prim-Read

deployments, which are surmounted with a technical assumptdon

similar to (5.3). Another alternative, which we have not pursued,

but which has a lengthy history of success in two-sided optimiza-

tion problems, is randomization; cf. [4]. An additional novelty

is that--at least under the assumption we have chosen--target

prices are not quite directly proportional to target values.

Roughly speaking, the reason for this is that .(7.14) implies

that the ratio P(d*,p(d*))/p(d*) is not independent of p(d*),

which it would be if there were no tprminal unreliability, and

this' necessitates an adjustment of target prices.

By analogy with earlier notation, let

p(d,j,i) -Iq

which is the probability that the target j is destroyed by the

ith att~icking weapon Launched at it. We then have the following

analogues of Definition (7.9) and Theorem (7.11).

(7.15) DEFINITION. A deployment d* is a Prim-Read deptoyment

provided that for each two targets j and J'

v(j')ý(d*,j',l) - v(j)p(d*,J,l)

0 - v(j)p(d',J,2)

- v(j1)p(d3,J,(d*,J)).
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The meaning of this condition is that the expected target

value destroyed by each attacking weapon against which there

are interceptors deployed is the same and is equal to the target

value destroyed at each target by the first attacking weapon

against which no interceptors are deployed.

Unfortunately, the discreteness difficulties now become

severe and a Prim-Read deployment may not exist. Nonetheless

we do have the following result.

(7.16) THEOREM. Let v 0 - min{v(l), ... , v(T)) be the minimum

target value. If k > 1 is an integer such that for each I the

quantity

Z-U-[l + (k-l)) -]
pv 0 P

is an integer, then there exists a Prim-Read deployment d* such

that p(d*,J) - k for all targets j for which v(J) - v 0 . Speci-

fically, for each J
(7.17a) p(d 1 ,J) •vol)El + (k-l)•] + 1

and

(7.17b) d*(J,i) - - log(l+(p(d*,J)-i)ý)
log q

for i - 1, ... , p(d*,J).

We omit the proof of Theorem (7.16).

REMARK. Although we have not checked the details fully, we

believe that Theorem (7.16) remains valid if everywhere--includ-

ing in (7.17)--we replace the terminal reliability p by target-

dependent terminal reliabilities p3 . This modification is of

interest as a surrogate for targets that require more than one

hit, or differing numbers of hits, in order to be destroyed.
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C. ALTERNATIVE ATTRITION STRUCTURES

The attrition structure specified by Assumptions (l.lc) and
(1.2d) may be too simplistic for some potential applications of
our model, although it does seem fairly plausible for the nation-
wide defense problem in which interceptors are anti-ballistic

missiles. However, even in this situation interceptor missiles

might be under the control of a single tracking system and might
not be probabilistically independent. The independence assump-
tion is also questionable if the interceptors are aircraft since

interceptor tactics would presumably involve various forms of
cooperation. Our purpose in this Section is to indicate how
to extend our basic model to include other forms of attrition

equations. We restrict our attention to the single target case

since the assumption of independence of intercept/attrition
processes at different targets in the multiple target case seems

reasonable in virtually all potential applications of the model.
Also, we continue to assume that interactions involving different
attacking weapons are independent.

Let r(k) be the probability that an attacking weapon pene-

trates to the target when k intercoptors are deployed against it;

we previously assumed that

(7.18) r(t) -

Note that the function r appearing in (7.18) can be defined and
makes sense for nonintegral values of k, that r is continuous and

strictly decreasing as a function of to [0,*), and that r(O) -

1 and lim r(x) - 0. The latter properties entail existence
X4w -1 1

of an inverse function r :(0,l) + [O,c) such that rr- and-l
r r are the identity functions on (0,1] and [0,m), respectively.

The next result shows that invertibility of~ the attrition
function suffices to permit demonstration of existence and cal-

culation of a Prim-Read deployment.
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(7.19) THEOREM. Let r(i), the probability that an attacking

weapon penetrates when Z interceptors are deployed against it,

be given by a function r:[O,o) -o (0,1] such that

a) r(0) W l;

b) r is continuous and strictly decreasing;

a) 11m r(x) - 0.

Then for each integer p > 1 there exists a unique deployment d*

such that p(d*) m p and

(7.20) p(d*,i)

The deployment d* is given by

d*(i) r-l
P-i+J.

for i - 1, ... , p(d*).

COROLLARY. The associated interceptor requirement is

k -i2I(d*) w k (1 2.

The proof of Theorem (7.19) is an entirely straightforward

modification of that of Theorem (2.6) and is therefore omitted.

The optimality results obtained in Chapters III, IV, and V

remain valid for more general attrition functions; a careful

inspection of their various proofs reveals that the arguments

used do not depend on the specific form of the attrition function.

The nonoptimality results given in Examples (3.15) and (4.16)

seem to depend essentially only on the strict convexity of the

attrition function given by (7.18) and may remain valid if

strict convexity is imposed as an assumption. It is likely (but

we have not worked out the details) that the results of Chapter

VI also remain valid provided that the attrition function be

strictly convex.
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D. CHAPTER SUMMARY

In this Chapter we derive the forms of Prim-Read deployments

under several variations of the basic Assumptions (1.1) and (1.2);
these variations permit representation pf phenomena of physical
interest that were excluded (for reasons of economy and simpli-
city) by our original assumptions. Those phenomena treated in
this Chapter are target dependent intercept probabilities, ini-
tially unreliable attacking weapons (which may be launched but
never arrive at the interceptor defense), terminally unreliable

attacking weapons (which, even having penetrated the interceptor
defense, may fail to destroy the target), and alternative attri-
tion structures for representing the engagement of a single
attacking weapon by one or more interceptors.

The principal mathematical results of this Chapter are the
following.

1) Theorem (7.2), which states that if the penetration
probability at target J is qj o (0,1) and if a Prim-Read deploy-
ment d1 is defined by the condition that

v(J)p(d*,J,i) 1

for all J and i, where k is a positive, integral scaling parame-
ter, then

d*(~i)= -log(tv(j)-i+l)
log qj

for J - 1, ... , T and i 1 1, ... , p(d*,J) - kv(J). Target prices
remain directly proportional to target values.

2) Theorem (7.5), which gives the form and payoff function
of a Prim-Read deployment for the case of a single target and
initially unreliable attacking weapons. Let p be the probability

,, •that each attacking weapon is initially reliable (i.e., reaches

the vicinity of the target and requires a reaction by the

135
I|

S. .. II II III I~ lII I .. . < ¼ . -- 1 t a - • .. . . , i - L J _I r ' " • . .



defending side). A deployment d* is by definition a Prim-Read

deployment if

p(d*,l) - p(d*,2) * ... - p(d*,p(d*))

It is shown that for each p this condition is satisfied by the

ordinary Prim-Read deployment d* with p(d*) - p, namely, the

deployment d* given by

d*(i) - l°•(P-i+l I il

"log q

Furthermore, the associated payoff function is given by

p(d*,i) P_ , i-1,...,p,

P 1 -i )pl• - i-l-k >

P 4,'0 1

In terms of the defending side's choice of a Prim-Read deployment,

no change from the case p w 1 of perfectly reliable attacking wea-

pons is called for; the defending side should choose as if p were

equal to 1 and not as if the attacking side's resources were

reduced by a factor of 1 - p. This conclusion holds also in the

multiple target case.

3) Theorem (7.11), which gives the form of a Prim-Read

deployment when there is but one target and when attacking

weapons may be terminally unreliable. Let p- be the terminal

reliability of each attacking weapon, so that 1 - P is the

probability that an attacking weapon falls to destroy the target

given that it has penetrated the interceptor defense. A Prim-

Read deployment d* is defined by the condition

p(d*,l) , p(d*,2) - ... - p(d*,p(d*))

i, ~and is shown to be given by

V. dC~i) - - log(l+(P(d)i)S: ~d*(i)--
log q
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Here p(d*) - min(i:d*(i)mO} is one more than the number of
attacking weapons against which interceptors are assigned to
be deployed. If p(d*) attacking weapons are committed, the
target is destroyed with probability

P~d*,p(d*)) - p(d*)•

1 + (p(d')-l)5

which is less than one if p < 1.

4) Theorem (7.16), which gives the form of a Prim-Read
deployment (if it exists) for the case of multiple targets and
terminally unreliable attacking weapons. The equalization con-
dition defining a Prim-Read deployment d* is that

v(j)p(d*,J,l) - v(j)p(d*,J,2)

- v(J)p(d*,Jp(d*,J))

- v(J')p(d*,J',l)

for all targets j and J'. If v0 is the minimum target value
and if k > 1 is an integer for which

L, I1 + (k-1)p]- _

pvo P

is an integer for each J, then there exists a Prim-Read deployment
d# such that p(d*,J) - k if v(J) - vO. The deployment d* is given

by

P,, El + (k-l)p] + 1 - 1
{.Pvo p
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- _ 'k + (V(_ ) _ 1)(J. -

0 0 p

and by

d*(Ji) - log[l + (p(d*j)-I)ý]
log q

for J 1, ... , T and i - 1, ... , p(d*,J). Target prices are no

longer directly proportional to target values.

5) Theorem (7.19), which gives the form of Prim-Read deploy-

merits for the case of a single target and a general attrition

function (which must satisfy some mild and plausible restrictions).

The more general attrition structure applies only to an inter-

action involving one attacking weapon and some interceptors; inter-

actions involving different attacking weapons (or occurring at

different targets in the multiple target case) continue to be

assumed to be independent. Let r(x) be the probability that an

attacking weapon is not destroyed (i.e., successfully penetrates)

if x n deployed against it. Under the assumptions

that

a) r(0) - 1;
b) r is continuous and strictly decreasing (i.e., an

inverse function r- exists);
c) lim r(x) - 0,

ana if a Prim-Read deployment d* is defined by the condition

p(d',i) - ,- ,,)

then

-1 1

"d*(i) - .-07d,) + 1)

for i -,1, --(d*).
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The optimality results of Chapters III, IV, and V extend
to include all four phenomena described in this Chapter. Under
the assumption that the attrition function r be strictly convex,

we believe--but have not verified in detail--that the nonoptimal-

ity results of Examples (3.15) and (4.16), and also the results

of Chapter VI, remain valid.
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Chapter VIII

SUMMARY AND CONCLUSIONS

This Chapter summarizes and synthesizes the main mathema-

tical results in this paper arnd their principal physical
implications and interpretations. We intend it to be somewhat
more than a mere re-listing of our most important Theorems, but
at the same time we urge the reader not to rely on this Chapter

alone in attempting to understand the content of the paper. A
Summary, no matter how cogent, cannot convey the full import of
the results and exaniples and comments appearing in the body of
the paper. At the very minimum, the general discussions in

Chapter I and Chapter V, and the Summaries of Chapters II, I11,

IV, V, VI, and VII are essential reading in order to obtain a
usable knowledge of the paper. After that, we would recommend
reading Chapters II, V, IV, VII, VI, and III in that order.
Chapter III is anomalous in that it is important to the concep-
tual and mathematical development of the paper, but treats the
physically uninteresting case in which there is only one target.

We have organized this Chapter in the following manner.
Section A is a concise re-statement of the important physical
and decision-making aspects of the target defense problem treated
in this paper. Section B discusses the defining properties and
form of the Prim-Read deployments, while Section C treats the

important target defense principle that is central to our main
results. In Section D we re-state, and once more interpret,
the main mathematical results of the paper, all of which appear

in Chapter V. A number of secondary results are listed in
Section E. In Section F we relate our work to previous research
and existing literature on defense allocation problems in
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general and missile/interceptor allocation problems in parti-
cular. Finally, in Section G we mention briefly a few aspects

of the problem that are treated not at all or inadequately in
this paper. The reader who has read the whole paper may well
protest that there couldn't be any, but there assuredly are.

A. THE UNDERLYING PROBLEM AND THE MODEL

The physical problem studied in this paper is the optimal
use of limited interceptor resources in nationwide defense of

population and production resources against attack by enemy

ballistic missiles. While the model and the results of this
paper may have applicability to other defense situations involv-

ing attacking weapons and interceptors, it is toward analysis

and understanding of the nationwide defense question that our

research has been directed.

We have represented the optimization aspects of the problem
as a sequential, min-max optimization problem in which the
attacking side is permitted to optimize its allocation of

weapons among targets given full knowledge of the interceptor

deployment plans of the defending side. Under the constraint

of the attacking side's subsequent opportunity to maxf.mize

target damage, the defending side seeks to minimize target

damage, where the latter is measured by an appropriate

criterion.

Table 2 indicates schematically the decision-making
structure of the problem. To summarize that structure one
more time, the defending side, knowing that attacking weapons
will arrive sequentially at each target and that it must deploy
interceptors without knowledge of how many more weapons may

follow, seeks a deployment schedule that minimizes the maximum

target damage that can be achieved against the chosen deploy-

ment, i.e., seeks to minimize the target damage inflicted by
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Table 2. DECISION-MAKING STRUCTURE OF THE PROBLEM

DECISION MAKER: Defending Side

CHOICES TO BE MADE:

1. Which targets to defend

2. Allocation of interceptors to targets
3. Allocation of interceptors at each target to

sequentially arriving attacking weapons

INFORMATION AVAILABLE:

1. That attacking weapons directed at each target
will arrive sequentially

2. Possibly, the size of attacking side's stockpile
of weapons

GOAL:
Time To minimize the target damage that results from an

allocation of attacking weapons that is optimized on
the basis of full knowledge of the chosen interceptor
deployment

DECISION MAKER: Attacking side

CHOICES TO BE MADE:

Allocation of attacking weapons among targets

INFORMATION AVAILABLE:

Complete knowledge of allocation of interceptors to
sequentially arriving weapons at each target

GOAL:
To maximize either target value destroyed or target
value destroyed per attacking weapon committed
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an allocation of attacking weapons that is optimized on the

basis of full knowledge of the chosen deployment.

Two principal target damage criteria are studied in this

paper: expected target value destroyed and expected target

value destroyed per attacking weapon committed. The former is

an absolute criterion, whereas the latter attempts also to

account for the generally diminishing yield from commitment of

additional attacking weapons. Symbolically, we are studying

min-max problems with objective functions of the forms

minimize max V(d,a)
d a

and

minimize max V(d~a)
d a a

where d is the interceptor allocation, a is the allocation of

attacking weapons among the targets, V(d,a) is the resultant
A

target value destroyed, and a Is the number of attacking weapons

committed. In both problems we have imposed restrictions on a.

which some of the time are treated parametrically. Similar

restrictions on d are crucial to most of cur results.

In physical terms, the most important underlying assump-
tions are the following:

1) Defensive interceptors must be assigned in advance to

various targets and cannot be reassigned, adaptively or other-

wise, during the course of an attack.

2) Attacking weapons directed at each target arrive there

sequentially in time. When an attacking weapon arrives, the

defending side does not know how many more attacking weapons

will follow it, but must nonetheless allocate interceptors to

seek to destroy it.
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3) The attacking side must allocate weapons among targets

in advance of an attack and cannot adaptively re-allocate

weapons as the attack progresses (even though weapons arrive

at each target sequentially).

4) Except in unrealistic cases, the defending side's

limited interceptor resources will prevent its defending all

of the targets. Moreover, those targets that must be left

undefended will generally be of differing values.

The additional assumptions we have imposed in order to

incorporate these fundamental phenomena into a tractable mathe-

matical model are given in (1.1) anda (1.). Of these, the

assumption that a target is destroyed with certainty by an

unintercepted attacking weapon has the clearest physical

import and is probably the most restrictive.

B. PRIM-READ DEPLOYMENTS

Assume that the defending side has a number T of targets,

with respective values v(l) > ... ? v(T), all of which are

assumed to be positive integers. Let d(Ji) be the number of

interceptors allocated to the i th attacking weapon to arrive

at target j (of course, because of the ailLocation chosen by

the attacking side, the ith attacking weapon may never be com-

mitted). For each j let p(d,J) a min(i: d(J,i)-O}, which we

have defined to be the price of target j imposed by the deploy-

ment d. By committing p(d,j) weapons to target j the attacking

side can be certain of its destruction. Finally, for each j

and i, and for an interceptor deployment d, let

(8.1) p(d,J,i) *-[l (1-q dQ(Z))] qd j ,

where q is the one-on-one penetration probability. Then, p(d,j,i)

is the probability that target J is destroyed by the ith attacking
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I,

weapon committed to it, when the defending side employs the

interceptor deployment d. By virtue of our various assumptions,

p(d,J,i) - 0 if i > p(d,j) and

p(d '
(8.2) • p(dj,i) - 1 ,

i'l

no matter what the deployment d.

The basis for a Prim-Read deployment can be stated in two

ways. In the more physical sense, a deployment d* is a Prim-

Read deployment if the payoff function V(d*,•) defined by

T
(8.3) V(d*,i) - max • v(j)P(d*,J,a(J))

ami J-1

is such that its graph is of the form shown in Figure 9:

linear on an interval [0,i*] for some i* and strictly concave

from i* up to the point i** at which all targets are destroyed.

(In (8.3), the maximum is over all allocations a - (a(1),...,

a(T)) of attackin& weapons among the targets, for which

a la a(l) +...+ a(T) is equal to i; P(d*,J,a(j)) is the cumu-

lative form of (8.1).) In the more mathematical sense, a deploy-

ment d* is said (i.e., defined) to be a Prim-Read deployment if

for any two targets J and J' that are initially defended,

(e.4) v(Q)p(d*,J,l) - v(j)p(d*,J,2)

-
- v(J')p(d*,J',p(d",J'))

VQ I)=d ., Il)

The important question of properly choosing initially defended

targets and undefended targets will be discussed in'the next

Section.
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The interpretation of (8.4) is that the expected target value

destroyed by an attacking weapon committed to an initially defended

target does not vary, either weapon-by-weapon or target-by-target,

provided only that no target is certain to have been destroyed. One

can infer from (8.2) and (8.4) that the ratio p(d',J)/v(j) is inde-

pendent of J (if target j is initially defended). For each choice

of scaling parameter a for the common value of these ratios such
that av(j) is an integer for each initially defended target J,
there exists a corresponding Prim-Read deployment d*, which is
given by p(d*,J) - av(j)

and

(8. d*(Jxi) - -log(av(j)-i+l)

OL log q
where (8.5)is valid for all initially defended targets j and for
i - 1, ... , cv(J). In Chapters II, IV and V we took a to be an
integer k, which, though a simplification, causes no loss of

generality.

It can easily be seen from (8.5) that a target of value 1
will not be defended if a < 1, but may be defended--depending on

how the defending side chooses which targets to defend--if a > 1.
As previously intimated, it is this choice of which targets to
defend that is of particular physical importance and interest

since in the situations to which this model is envisioned as

applicable, the defending side will almost never have sufficient

interceptor resources to defend all of the targets. The next

"Section discusses the mechanism we propose for choosing which
targets to defend.

C. THE TARGET DEFENSE PRINCIPLE

Our proposed rule for choosing which targets to defend is
the following target defenae principle, stated first in ,verbal,

@ Sthen in mathematical form.
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Verbal Form. Targets must be defended in order of decreasing

value in such a manner that the expected target value destroyed

by an attacking weapon committed to an initially defended target,

provided that prior destruction of the target not be certain,

exceed the value of every initially undefended target.

Mathematical Form. A deployment d satisfies the target

defense principle if, whenever j and J' are targets for which

p(dj) > 2 and p(d,J') - 1 (i.e., target J is initially defended

and target j' is not defended at all), then

(8.6) v(j)p(d,j,i) > v(J')

for each i - I, ... , p(d,J).

Since it is impossible to satisfy (8.6) if vQl') > vJ),

this condition does incorporate the requirement that targets be

defended in order of decreasing value.

The reasoning underlying this particular target defense

principle is discussed at some length in Chapters I,A and V,A,

to which we refer the reader. Briefly, the rationale is that

the purpose of defending some targets, but not all, is to force

expenditure of as many of the attacking side's resources as

possible in order to destroy the defended targets. That is, it

is a patent waste of interceptor resources to defend any target

so heavily that undefended targets will be attacked instead.

We also observe that the stated form of the target defense

principle is consistent with the decision-making structure of

the problem; under a different decision-making structure the

same reasoning might lead to a qualitatively different defense

principle. (

Recalling that v(l) > ... > v(T), we see that a Prim-Read

deployment d* satisfies the target defense principle if:

1) There is some J0 such that p(d*,l) > 2, ... , p(d*,j 0)
> 2 but p(d*,J 0 +l) - ... - P(d*,T) - 1; that is, the most

valuable targets are initially defended.
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2) For J J0

(8.7) v(j 0 +l) < v(J)p(d*,j,i)

for i - 1, ... , p(dW,J).

Since v(J 0 +l) > v(J') for all targets J' that are not
defended at all, (8.7) does indeed imply (8.6). Since (8.5)

implies that

p(d*,J i) ' ,*p(d',)J

and since by the definition of a Prim-Read deployment, we have

p(d*,J) w ov(j) for some a, (8.7) also implies that

(8.8) 1 <

Our principal results, discussed in the next section, are proved
under an assumption that equality halds_(...8_)...

A.

To conclude this section, we note that a Prim-Read deploy-
ment d* satisfying the target defense principle possesses

a payoff function V(d*,.), as defined by (8.3), that is of the

form shown in Figure 9. Somewhat more specifically, V(d*,*)

is linear on an' interval [O,i*) corresponding to destruction of
the initially defended targets; here i* is the number of

attacking weapons needed to destroy all of the initially

defended targets. Thereafter, V(d*,.) is strictly concave up

to the point i•*, which represents the number of attacking wea-

pons necessary (if optimally allocated) to destroy all of the
targets. Furthermore, only Prim-Read deployments satisfying

the target defense principle have payoff functions of this

form.

1
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D. MAIN MATHEMATICAL RESULTS

The most important mathematical results in this paper
appear in Chapter V and concern optimality (and nonoptimality)
properties of Prim-Read deployments that satisfy the target
defense principle, relative to a set of comparable deployments
that also satisfy the target defense principle. In Chapter V
we impose the hypothesis that

v(l) > ... > v(T),

which is not very restrictive, and the hypothesis that v(J)/
v(J+l) be an integer for each J. This latter hypothesis is
restrictive, but many of our results don't require its full
force and we also discuss in Chapter V several ways of minimiz-
ing its restrictive effects.

The main results established in Chapter V are the following.

1) Under the hypotheses noted above, for each J0 there
exists a maximally strong Prim-Read deployment d* that satisfies
the target defense principle, initially defends targets l,...,J 0 ,,
and leaves targets J 0+l,-...,T undefended. That deployment d* is
given by

(8.9) d*(J,i) - log(n(j)-i+l)(8.9) log q

where n(J) - v(J)/v(j 0 +l). In order that this deployment be

defined we are forced to assume that v(J)/v(J 0 +l) is an integer
for each J < J0. The result which gives the existence and
explicit form of the Prim-Read deployment d* is Theorem (5.7). 1

2) If d* is the Prim-Read deployment corresponding to 0
initial defense of targets 1, ... , J0, as given by (8.9), then
d* is the unique solution to the optimization problem
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(8.10) minimize m~ax r ---)

l~r<'P(d*) r
s.t. I(d) < I(d*)

In (8.10), the quantity

AT
(d"* - p(d*,J)

Jul

is the number of attacking weapons needed--against the Prim-Read
deployment d*--in order to destroy all of the targets. Observe
that in (8.10) the deployment d is not constrained to satisfy
the target defense principle. Therefore, the content of this

result, which is Theorem (5.9), is that among all deployments
requiring no more interceptors than it does, the Prim-Read

deployment uniquely minimizes the maximum target value destroyed
per attacking weapon committed.

3) If d* is the Prim-Read deployment corresponding to
defense of targets 1, ... , as given by (8.9), and if

i J0
A < I p(d*,J) ,

Ju1

then d* is a solution to the optimization problem

(8.11) minimize V(d,A)

s.t. I(d) < I(d*)

d satisfies the target defense princi-
ple and defends targets l,...,J0.

Moreover, if A > p(d*,l) - 1 (the latter is the maximum number

of attacking weapons against which any target is defended), then

the Prim-Read deployment d* is the unique solution to the
problem (8.11). This result, which is Theorem (5.17), states
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that among deployments satisfying the target defense principle

and requiring no more interceptors than the Prim-Read deployment

d*, the latter minimizes the target value destroyed by an

optimized attack consisting of A weapons, provided that A be less

than or equal to the total of the Prim-Read prices of the initially

defended targets. If, in addition, A is greater than or equal to

the maximum number of attacking weapons against which any target

is defended, then the Prim-Read deployment uniquely minimizes the

target value destroyed.

4) If d* is the Prim-Read deployment corresponding to defense

of targets 1, ... , J01 as given by (8.9), then there exists a

deployment d, which can be calculated explicitly, such that d

satisfies the target defense principle, such that I(d) - I(d#),

and such that

V(dA) w V(d*,A) - I < V(d',A)

for all A satisfying

J0 T
1 p(d*,J) < A < I p(d*,j)

This recult, which is Theorem (5.32) and to the proof of which

the reader is referred for the explicit construction of the deploy-

ment d, states not only that the Prim-Read deployment d* fails

to minimize target value destroyed by an attack of size A that is

large enough to destroy all of the initially defended targets

together with at least one of the initially undefended targets

yet not large enough to destroy all the targets, but also that

in fact there exists a deployment d satisfying the target defense

principle and requiring no more interceptors than does d*, that

is uniformly superior to d*--in terms of target value destroyed--

for all such attack sizes.

In broad terms, the Prim-Read deployment minimizes target

value destroyed by an optimized allocation of attacking weapons
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if the attack size is at most sufficient to destroy the initially

defended targets and does so uniquely if the attack size is not

too small. However, the Prim-Read deployment does not minimize

target value destroyed by an optimized allocation of attacking

weapons if the attack is sufficiently large to be able to destroy

at least one of the initially undefended targets. These opti-

mality statements are relative to the set of deployments satis-

fying the target defense principle and not requiring more inter-

ceptors than does the Prim-Read deployment. On the other hand,

for the criterion of maximum target value destroyed per attacking

weapon committed, the Prim-Read deployment is uniquely optimal

relative to the (larger) set of deployments not requiring more

interceptors (but also not necessarily satisfying the target

defense principle).

We emphasize that in most of the above optimality results

the alternative deployments are not constrained to defend pre-

cisely the targets 1, ... , Jo.

Table 3 provides a final summary of these important opti-

mality properties.

There is one further interesting optimality property pre-

sented in Chapter V, namely Theorem (5.22), which assel'ts that

if d* is the Prim-Read deployment that defends targets 1, ... ,

Jos as given by (8.9), then d* is the unique solution to the

optimization problem

J0
(8.12) maximize • p(d,J)

Jul

s.t. d satisfies the target defense principle.

That is, among all deployments satisfying the target defense

principle and initially defending targets 1, ... , JO, the Prim-

o Read deployment d* uniquely maximizes the resource commitment

thereby imposed on the attacking side in order to destroy the

initially defended targets.
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Table 3. SUMMARY OF OPTIMALITY PROPERTIES OF PRIM-READ
DEPLOYMENTS UNDER THE TARGET DEFENSE PRINCIPLE

Criterion Optimality Properties of d*(1)

V(d,A) 1) Optimal relative to (d: 1(d) :S I(d*) and
d satisfies the target defense principle)
if A < p(d*,l) - I a max p(d*,j - 1.j

2) Uniquely optimal relative to {d: I(d)
5. I(d*) and d satisfies the target defense

JO
-.principle} if p(d*,l) - I < A < I p(d*,J).

- j 1l

3) Uniformly inferior to a known deployment d
such that I(d) 0I(d*) and d satisfies the
target defense principle, if

JO T
1 p(d*,J) < A < I p(d*,J).

max V(d,r) Uniquely optimal relative to {d: I(d)<I(d*)}.

1<r<Ap(d*)

( d* Prm-Read deployment that defends targets 1, ... , cf. (8.9).
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For further information on the results summarized here, the

reader is referred to Chapter V.

E. MATHEMATICAL RESULTS OF SECONDARY IMPORTANCE

As we have stated several times previously, we believe that

the results of Chapter V are the most important in the paper

because they apply to the physically meaningful case wherein

many targets of differing values must be left undefended. The

results of Chapters IV and VI pertain to the multiple target case,

but only when either all targets are defended or only targets of

unit value are left undefended. While this latter situation is

not necessarily very interesting physically, it is quite inter-

esting mathematically. The results given in Chapters IV and VI

are illuminating complements to the results in Chapter V, for

they clarify the significance of the undefended targets and of

the target defense principle. Furthermore, these results do

develop interesting and further optimality properties of Prim-

Read deployments. For these-reasons we will now give a brief

summary of the results of Chapters IV and VI.

Chapter IV is a general exploration of optimality properties
of Prim-Read deployments d* of the form

k

(8.13) d;(Ji) * - og2Z*( i+1• ' " log q

for J - 1, ... , T and i = 1, ... , kv(j) - p(d*,J), where -k is a

positive integer. Note that all targets are initially defended

unless k - 1 and that in this latter case only targets of value

1 are left entirely undefended.

The main optimality results established in Chapter IV are

the following.

0 1) If k is fixed, then the Prim-Read deployment d* given

by (8.13) is the unique solution to the optimization problem
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( C3.14) minimize I(d)

A

s'. (d) - d*

max V(d,r) < 1

k -

That is, subject to a fixed total of target prices and a con-
straint on the maximum target value destroyed per attacking
weapon committed, the Prim-Read deployment uniquely requires
the fewest interceptors; this assertion is Theorem (4.7).

2) For each k, the Prim-Read deployment d* given by (8.13)
is the unique solution to the optimization problem

(8.15) minimize maý V(dr)
l <.r~ip(d) r

s.t. (d) (d )

k

1(d) lj (d*)

Of all deployments with the same total of target prices and
interceptor requirement not exceeding that of the Prim-Read
deployment d*, the latter uniquely minimizes the maximum target
value destroyed per attacking weapon committed. This result is
Theorem (4.8).

Two interesting characterizations (not involving optimality
properties) of Prim-Read deployments are also established in
Chapter IV; they are the following.

1) For each k, the Prim-Read deployment d* given by (8.13)
is the only deployment d such that P(d) - p(dý), 1(d) < I(dj) and
V(d,.) is convex on [O,$(d)]. This particular result is demon-

strated in Theorem (4.3).

2) For a defensive deployment d and a target-by-target
allocation of attacking weapons a, let
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T a(J)(dj(J 1)
i?(d,a) -Tv(J). -1 1 6

Jul [ oi

which is the expected target value destroyed. Then it is shown

in Theorem (4.10) that for each k, among all deployments d for
which S(d) a '(d*) and I(d) < I(d*), only the Prim-Read deploy-
ment d* given by (8.13) makes V(d,a) dependent on the allocationk A

a only through its total size a - • a(J). That is, with the
total of target prices and the defending side's interceptor

resources fixed, only the Prim-Read deployment d# prevents
the attacking side from benefitting by its being able to opti-

mize the allocation of attacking weapons among the targets on
the basis of full knowledge of the deployment chosen by the

defending side.

Finally, it is shown in Example (4.16) that with k fixed
the Prim-Read deployment d* given by (8.13) is not a solution
to the optimization problem

(8.16) minimize V(d,kv)

s.t. I(d) < I(d*) ,

nor even to tie more restricted problem in which interceptor
resources are constrained on a target-by-target basis to their
Prim-Read levels. However, the Prim-Read deployment d* is
robust in the sense of being within 10 percent of the uniform
deployment for the problem (8.16).

In Chapter VI we consider the effect of fixing individual
target prices at Prim-Read levels, fixing the defending side's
interceptor resources at the Prim.-Read level, and employing the

criterion of target value destroyed, where the number of attack-

ing weapons is treated as a parameter in the analysis. Speci-

fically, we show in Theorem (6.13) that if d* is the Prim-Read
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deployment given by (8.13) with k 1 1, then, except for a small

number of known exceptional cases, d* is a solution to the opti-

mization problem

(8.17) minimize V(d,i)

s.t. p(dj) - p(d*,J) = v(j), jul,...,T,

1(d) < I(d*)

if and only if there is a set J0 of targets that can be exactly

destroyed by i attacking weapons in the sense that

i - • v(J)
j ,J0

We will not re-state the results of the remaining Chapters,

namely Chapters I1, I11, and VII. In Chapter II we show how to

derive the form of Prim-Read deployments from hypotheses of the

form (8.4)., Chapter III develops optimality properties of Prim-

Read deployments in the single target case. While this case is

essentially meaningless in terms of the physical problems that

motivated our research, it is important because the results and

the techniques of proof appearing in Chapter III provide (as it

turns out) the correct point of view from which to approach the

multiple target case. Finally, Chapter VII derives the forms

and investigates some extremely basic properties of Prim-Read

deployments when certain of the hypotheses given in (1.1) and

(1.2) are weakened. Specifically, we calculate Prim-Read

deployments for the cases of:

1) Target dependent intercept probabilities;

2) Initially unreliable attacking weapons that are launched

"but may or may not reach the vicinity of the target and require

interceptors to be deployed against them;

0
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3) Terminally unreliable attacking weapons that may fail to

destroy the target despite their not having been intercepted;

14) Alternative forms of' attrition equations for the inter-

action involving one attacking weapon and several interceptors.

We refer the reader to Chapter VII or to its summary for

the explicit results obtained.

Table 4 below lists the major and many of the secondary

results of the paper grouped by the general form of the result.

Using it, the reader may easily compare and contrast analogous

remults in different oe:lss.

F. RELATED RESEARCH ON INTERCEPTOR ALLOCATION PROBLEMS

We emphasize from the beginning that this eection is not

intended to be (and is not) a comprehensive survey of the vast

existing literature on problems related to allocation of nombat

resources, or even of problems related to allocatlon of inter-

.cept-ors as a defense against attacking missiles. Rather, the

following discussion

1) concentrates on work related directly or nearly directly

to Prim-Read deployments;

2) emphasizes papers dealing primarily with mathematical

optimality questions as opposed to the "real-world" decision

problem giving rise to those questions;

3) entirely excludes consideration ofa the physical nature

of the interception process itself; and

4) draws almost exclusively upon the open literature.

So far as we can determine, the defensive deployment we

have called the Prim-Read deployment was first proposed by

W.T. Read, Jr., in [15]. R.C. Prim seemingly performed much

0 of the fundamental mathematical research leading to [151,
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Table 4. ANALOGOUS RESULTS FOR DIFFERENT CASES

Kind of Result Specific Instances

Form of Prim-Read deployment Single target: Theorem (2.6)

Multiple target: Theorem (2.13)

Under target defense principle:
"Theorem (.5.7)

With target dependent intercept
probabilities: Theorem (7.2)

With initially unreliable attack-
ing weapons: Theorem (7.5).

With terminally unreliable attack-
inq weapons: Theorems (7.11), (7.'16)

With general attrition function:
Theorem (7.19)

Convexity characterization of Single target: Theorem (3.1)
P-Im-Read deployment Multiple target: Theorem (4.3)

Optimalit) properties for target - Single target: Example. (3.15)
value destroyed Multiple target: Example (4.16);

Theorem (6.13)

Under target defense principle:
Theorems (5.17) and (5.32)

'Optimality properties for target Single target: Theorem (3.11)
value destroyed per attacking Multiple target: Theorem (4.8)
weapon committed

Under target defense principle:
Theorem (5.9)

Optimality properties for inter- Single target: Theorem (3.9)
ceptor requirement Multiple target: Theorem (4.7)

Optimality property for target Under target defense principle:
prices Theorem (5.22)
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despite his not being named as a co-author. Attribution of the
deployment to both men seems as fair as it is established. In
[15] the Prim-Read deployment is proposed on the grounds that:

1) Given an interceptor allocation, the attacking side
should commit that number of weapons which maximizes the cumu-

lative penetration probability per weapon committed. That is,
the attacking side should choose i* such that

P Pii)
Smax 

, i
i i

where P(i) is the probability that one of the first i attacking
weapons destroys the target. This is one of the criteria we

have considered in this paper.

2) Under the assumption that this will be done, the defend-
ing side should in some undefined way attempt to make all ways
of maximizing P(i)/i the same to the attacking side.

The deployment satisfying (2.5) is then asserted to achieve
the defending side's objective. We have seen in the preceding

Chapters that, in several senses, it does.

In [15], Read also mentions that his proposed deployment
makes the probability of scoring a kill the same for all attack-

ing weapons. It is this property (and optimality properties

heuristically inferred to follow from it) that seems to motivate
references to and applications of the Prim-Read deployment dur-

ing the 1960s. As representative examples we mention the mono-
graph of Eckler and Burr [8], the two papers of Berger [2,3] and

the paper of Everett [9]. In [8] and [9] the Prim-Read deploy-
ment is referred to as the constant value decrement (CVD) deploy-

ment, especially in the multiple target case. A recurring con-

jecture in these works is that uniformity--as expressed in (2.12)--
implies optimality according to some objective function. In this
paper we have formulated and verified several. specific versions of
this conjecture.
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In the Air Force Syllabus of Equations for Force Effective-

ness Analysis [19) there appear several detailed derivations of

formulas associated with the Prim-Read deployment, such as the

interceptor requirement I* given in (2.8). Consideration is

also given to possible use of decoys by the attacking side. In

[9), Everett treats the CVD deployment for "dilute" attacks, in
which a successfully penetrating attacking weapon is not certain

to destroy a target. His results appear to differ from those we

present in Chapter VII.

Essentially none of these papers treats the multiple target

case under assumption of the target defense principle, and none

of them contains the detailed derivations and interpretations of

optimality properties that are given in this paper.

The general problem of allocating interceptors and attacking

weapons among targets has a lengthy and detailed history; work on

it before 1971 is surveyed by Matlin in [11), and much general

information is contained in the Air Force Syllabus [19) and in

the books of Danskin [6] and Dresher [7). Our particular problem,

with sequential arrivals of attacking weapons and local defenses

(i.e., interceptors that cannot be reassigned), is discussed in

the papers of Berger [2,3), Gorfinkel [10), Perkins [13], and

Shumate and Howard [17. While some of these authors obtain

results similar to ours, none of them is particularly careful

about either formulation or establishment of optimality results.

Nonetheless, we suggest that these papers be consulted in order

that the reader develop a better understanding of the problem.

It is interesting to note, however, that Perkins in [13)

as3erts that (an ill-defined) optimality obtains when the ratio

of attacking strength to defending strength is the same at all

targets, which does not occur for Prim-Read deployments except

when all targets have the same value.

Several of the papers referred to above put forth concepts

of the role of defenses and the goal of committing resources to
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defensive purposes that are similar to those followed in this

paper. This is particularly so in regard to the role of the

target defense principle of Chapter V in the situation in which

many targets must be left undefended. For example, Read in [15)

states that the purpose of a defense is to raise the price of

destroying some targets to the point that not many targets can

be attacked. The defending side, then, does not benefit in

terms of the targets that are defended and attacked but rather

in terms of the undefended (and, under the target defense prin-

ciple, less valuable) targets, which the attacking side--it is

hoped--will not have sufficient resources to attack. Brodheim,

Herzer, and Russ assert in [5) that "...an active defense system

cannot prevent a determined and powerful offense from destroying

a given number of targets. Facing such an opponent, the defense

objective is generally to maximize the offensive cost of such an

attack." It is also well recognized that this entails defending

targets in order of decreasing value [19).

The idea that the defending side should choose its deploy-

ment under the assumption that. the attacking side will thereafter

optimize against it is a central idea of min-max theory [6,7).
Specifically in terms of defense deployment problems, one finds

in [141 the statement by Pugh that the defending side should

"...choose that allocation of defense resources that will give

best protection when an attack is optimized against whatever

defenses are chosen." The concept that the proper decision

criterion is expected target value destroyed is so common and

accepted that it defies attribution to any individual, while

that the criterion should be (expected) target value destroyed

per attacking weapon committed is widely proposed; cf. [2,3,13,

19], for example.

It is virtually universally agreed that appropriate opti-

mality criteria involvt. expectations. This use of expectations

Sis subtly related to the target defense principle: when the
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criterion involves expected target value destroyed (regardless

of whether normalized by the number of attacking weapons com-

mitted) it is sensible to defend the more valuable targets in

order to force expenditure of attacking weapons to destroy

those targets. It would not make sense to defend any target

(even the most valuable one) so heavily that it will not be

attacked at all, for the attacking side would then simply

attack the undefended targets, which renders the interceptors

essentially useless.

Employment of the concept of the price of a target, in the

sense of price being a measure of the resources that the attack-

ing side must commit in order to bring about a certain level of

target destruction, goes back at least to Read [15]. In [15],

the price of the target is defined as

a *(ax (A2.) a

For Prim-Read deployments this coincides with price as defined

by (2.1). For other deployments it seems best interpreted

through the equation

P~ii*

1
i.e., a attacking weapons, each with the same probability • of

destroying the target, would destroy the target with certainty

under a linear payoff function.

Similar, although not always identical, definitions of

price may be found in the Air Force Syllabus of Equations for

Force Effectiveness Analysis [19] and in the papers of Berger

[2,3], Everett [9] and Shumate and Howard [17].

The idea that target prices, in the multiple target case,

should be proportional to target values has been harder for us

to trace. It appears with no Justification in the Air Force
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Syllabus [19] and is assumed by Shumate and Howard [17], again

with absolutely no justification, to be optimal in the sense of

minimizing maximum target damage per attacking weapon. In view

of the allegation by some authors that optimal defensive deploy-

ments require that interceptor totals (or possibly both inter-

ceptor totals and attacking weapon commitments) be proportional

to target values, it would be interesting to have a more detailed

account of the development of these differing opinions.

Min-max aspects of the missile allocation problem are

treated in the books of Danskin [6] and Dresher [7] and in the

papers by Pearsall [12] and Soland [18). None of these authors,

however, gives explicit consideration of interceptor deployments

against sequentially arriving penetrators.

G. POSSIBLE QUESTIONS FOR FURTHER RESEARCH

The following are a few potentially significant facets of

the basic problem treated in this paper that are discussed either

not at all or too shallowly. Further research on the problem

might profitably be directed to these questions.

1) Except implicitly when dealing with minimizing the number

of interceptors required or when imposing on the defending side a

constraint on the number of interceptors available, we have not

included any discussion of cost structures. Especially, we have

not considered how certain expenditures by one side can force

the other side into potentially equally or more costly responses.

In general this is a neglected part of military modelling: to

"what extent is a resource expenditure valuable because it imposes

a compensating expenditure on the other side, which then may be

unable to meet other, important goals? In the context of the

problem treated in this paper, the defending side might wish to

increase the prices of the targets in order to attempt to force
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the attacking side to Allocate more attacking weapons to destruc-

tion of those targets.

The whole question of attempts to force on the opposing

side resource expenditures or allocations it might not other-

wise undertake seems very worthy of further study in essen-

tially all combat contexts.

Finally, we do not consider possibly large fixed costs

(e.g., for radar) that may render infeasible defense of certain

low value targets that would otherwise be defended. Fixed

costs could also create difficulties in completing defense of

a more valuable target.

2) We have considered only local (i.e., point) defenses in

this paper. The case of mixed area/point defenses is physically
meaningful and mathematically interesting, and therefore merits

some attention.

3) For a Prim-Read deployment, the payoff function is

linear down to the origin. However in reality it may be known

(or the defense may be willing to believe) that the attack size
is certain to exceed some lower bound Amin' In this case the

Prim-Read deployment is a misuse of resources because it protects

against attack sizes less than Amin' which cannot occur. Perhaps

a different deployment using the same number of interceptors
yields a payoff function that is linear over the range of

possible attack sizes and lower over the same range than the

payoff function of the Prim-Read deployment. Such "modified

Prim-Read deployments" are certainly worthy of additional
research effort.

t4) The assumption that attacking weapons arrive sequentially

at each target is so fundamental to our model that a major alter-

ation of it would lead to an entirely new model. Nonetheless,

minor but physically meaningful variations of it ought to be

investigated.
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5) The model does not allow adaptive resource reallocations

by either side. Attacking weapons directed at a target that is

known to have been destroyed cannot be re-targetted; and inter-

ceptors deployed at a destroyed target cannot be reassigned

to defense of a target that is still surviving. For many poten-
tial applications of the model this seems to be a serious weak-
ness. It would be extremely interesting to investigate the effect

of allowing various forms of adaptive reassignment of attacking
weapons and interceptors. Representation of shoot-look-shoot

capability for the attacking side would be particularly important.

6) Many discreteness (i.e., non-integrality) difficulties

have been glossed over, especially in Chapter V. While in

some cases these difficulties are minor, in others they may be

severe. Further work is necessary in order to elucidate the

solutions. An alternative approach worth pursuing is suggested

by L. B. Anderson in "Nationwide Defense Against Nuclear Weapons:

Definition of Randy-Watch Deployments" (Working Paper WP-ll,

Project 2371, Institute for Defense Analyses, 1981).

7) Some physical effects that may be of interest in speci-

fic applications either are not represented explicitly in tho

model or are specifically assumed not to occur. Among such

effects are decoys, group attacks, partial target damage,
collateral damage, clock time, geography, undetected attacking

weapons and possible re-use of interceptors that fail to engage
(as opposed to engage, but fail to destroy) an attacking weapon.

8) Applicability of the basic model specified by (1.1) and
(1.2), or of the variations thereon which we described in Chapter

VII, to specific combat situations has been mentioned only briefly.

In carrying out our research we have thought of the model as
appropriate to defense of (essentially point) targets against

attacking missiles, Possibly it is not applicable even to this
situation, but possibly it is apjlicable not only here but also

to other combat processes. We have endeavored--by being explicit
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"about our underlying assumptions and their interpretations--to

give the reader at least one basis for judging possible applica-

bility to specific forms of combat. In any event, further study

would be required to establish applicability or credibility of

the model in specific physical situations.

9) The target defense principle should be studied more

carefully. Despite its appeal, we have imposed it as an assump-

ti.on; if it could be shown to be satisfied (or'to be nearly

satisfied) by solutions to problems of the form (4. 2 4 ), the

grounds'for it would be much more compelling.
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INDEX OF NOTATION

The following is a list of the notation that appears
throughout the paper; the page number associated with each
entry is that of its first occurrence. Additional, specialized
notation is introduced in (and, in each case, used only within)
Chapters III, IV, V9 VII and Appendix B.

Notation for the Single Target Case

Notation Page Meani ng 1
d(i) 23 Number of interceptors assigned to ith attacking

weapon by deployment d
d# 25 Prim-Read deployment

d 47 Uniform deployment
I(d) 36 Interceptor requirement for deployment d
p(di) 24 Probability that ith attacking weapon destroys

target, given deployment d
P(d,i) 35 Probability that one of attacking weapons 1,

.. *,i destroys target, given deployment d

q 12 One-on-one penetration probability
p(d) 24 Price of target for deployment d

Notation for the Multiple Target Case

Notation Page Meaning

a(J) 55 Number of attacking weapons assigned to
target J, given attack a

a 55 Total number of attacking weapons at all
targets, given attack a

d(J1) 29 Number of interceptors assigned by deployment
d to ith attacking weapon at target J
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Notation p Meaning

d* 30 Prim-Read deployment
62 Proportional deployment

I(d) 31 Interceptor requirement for deployment d
4 Number of attacking weapons needed to destroy

defended targets 4,

4 Number ot attacking weapons needed to destroy
all targets

JO 80 Number of defended targets
k 30 Scaling factor for Prim-Read deployments
n(J) 82 Ratio of value of target J to value of most

valuable undefended target
p(dj,i) 30 Probability that ith attacking weapon at

target J destroys it, given deployment d
P(d,ji) 89 Probability that target j is destroyed by one

of attacking weapons l,...,i at that target,
given deployment d

p 124 Initial reliability of attacking weapons
S128 Terminal reliability of attacking weapons

q 12 One-on-one penetration probability
V(d,i) 55 Maximum target value that can be destroyed

by i attacking weapons, given deployment d
V(d,a) 59 Target value destroyed, given attack a and

interceptor deployment d
v(J) 29 Value of target J
A
v 54 Total value of all targets

S147 Scaling factor for Prim-Read deployments
p(d,j) 29 Price of target J, given deployment d
P(d) 54 Total of all target prices, given deployment d
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EXAMPLES

In this Appendix we construct some Prim-Read deployments

for defense of the principal centers of population in the

United States and compare them with corresponding uniform

deployments.

Table A-i below lists (according to [20]) the twenty-nine

metropolitan regions in the U.S. with populations greater than

one million. The data were constructed from a table of popula-

tions of SMSA's (Standard Metropolitan Statistical Areas) but

SMSA's that ere nearby to one another have been combined. The

largest metropolitan area with population less than one million

has also been included.

Our first example deals with the case where the value of a

region as a target is a function of its population in the manner

indicated in Figure A-1. That is, a regicn with population p

has value V(p) given by

V(p) - 1 if p < 106

W 8p/106  if p ! 106

One might employ such a function on the rationale that regions

of size less than one million support insufficient heavy indus-

try to be really important targets; each has the same value,

which is one-eighth that of a region of size one million. The

value one-eighth is, of course, arbitrary, but is convenient

for illustrative purposes.
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Table A-I. REGIONS, POPULATIONS, VALUES

Region Population in Thousands Value

1) New York 6691 134

2) Los Angeles 9595 77

3) Chicago-Milwaukee 9014 72

4) Philadelphia 6531 52
5) Detroit-Toledo 5700 46

6) Baltimore-Washington 4978 40

7) San Francisco 4973 40

8) Cleveland 3279 26

9) Cincinnati 3101 25

10) Boston 2899 23

11) St. Louis 2410 19

12) Pittsburgh 2401 19

13) Dallas-Ft. Worth 2377 19

14) Buffalo-Rochester 2310 18

15) Houston 1999 16

16) Minneapolis-St. Paul 1965 16

17) Miami 1887 15

18) Atlanta 1597 13

19) Tampa-Orlando 1541 12

20) Seattle 1421 11

21) San Diego 1357 11

22) Richmond-Norfolk 1274 10

23) Kansas City 1271 10

24) Hartford-Springfield 1261 10

25) Denver 1237 10

26) Indianapolis 1109 9

27) New Orleans 1045 8

28) Columbus 1017 8

29) Portland 1009 8

30- Phoenix 967 1
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Figure A-1. TARGET VALUE AS A FUNCTION OF
POPULATION FOR EXAMPLE 1

Application of this function leads to the target values
in Table A-i, each rounded to the nearest integer.

It should be carefully noted that this particular value
function has the rather arbitrary cutoff at the population

level of 1O6. This has been done in order to ensure that the
Prim-Read deployments we construct below will satisfy the
target defense principle. In reality, of course, the U.S.
might be forced because of limited interceptor resources to

implement a deployment that does not satisfy the target
defense principle. Some of our theoretical results do not

apply to Prim-Read deployments not satisfying the target
.tdefense principle, but a Prim-Read deployment might be chosen

A-3
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nevertheless, on the basis that it is likely to be nearly

optimal, especially against an attack of unknown size. Finally,

we note that these difficulties are a result of the discrete-

ness of targets and attacking weapons, and do not arise in the

idealized situation depicted in Figure 5.

Suppose that the U.S., as defending side, chooses to con-

struct a Prim-Read deployment that defends targets 1, ... , 29

and satisfies the target defense principle. To do so, accord-

ing to the discussion in Sections B and C of Chapter VIII, it

will first choose a scaling parameter a such that

1) a < I/v(30) - 1;
2) av(J) is an integer for j - 1, ... , 29.

Then, it will construct the Prim-Read deployment d* given by

(A.1) d*(Jk) " log (av(J)-k+l)
1 " log q

for 1 < J < 29 and 1 < k < p(d*,j) - av(j), where the values

v(J) are taken from Table A-i.

Below we present results for the cases a - 1, a - 1/2

and a - 1/4; these three cases appear as Tables A-2, A-3,
and A-4, respectively. In all cases, q - 0.8. In each Table

we give target prices, Prim-Read interceptor totals for each
target, and target-by-target interceptor allocations if the
total number of interceptors (at all targets) for the Prim-Read

deployment were allocated among the initially defended targets

in direct proportion to their respective values. In symbols,

p(dlJ)

I(d*,J) d*(J,k)

"k-l

,; A-4
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Table A-2. RESULTS FOR EXAMPLE 1 WHEN - 1

Target Price I(dc*,J) I(CT,J)

1 134 2356 1648
2 77 1168 947
3 72 1071 886

4 52 701 640
5 46 596 566

6 40 494 492
7 40 4.94 492
8 26 275 320
9 25 260 308

10 23 231 283

11 19 176 234
12 19 176 234

13 19 176 234

14 18 163 221
15 16 137 197
16 16 137 197
17 15 125 185
18 13 101 160

19 12 90 148
20 11 79 135
21 11 79 135
22 10 68 123
23 10 68 123
24 10 68 123
25 10 68 123

26 9 57 111
27 8 48 98

28 8 48 98
29 8 48 98
30 1 0 0

Total s 778 9558 9559
A-5
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Table A-3. RESULTS FOR EXAMPLE 1 WHEN a - 0.5

Target Price I(d*,J) I(d",j)

1 67 977 635

2 38 461 360

3 36 429 341

4 26 275 246

5 23 231 218

6 20 190 190

7 20 190 190

8 13 101 123

9 12 90 114

10 12 90 114

11 10 68 95

12 10 68 95

13 10 68 95

14 9 57 85

15 8 48 76

16 8 48 76

17 8 48 76

18 6 29 57 uI
"19 6 29 57

20 6 29 57

21 5 21 47
22 5 21 47

23 5 21 47

24 5 21 47
25 5 21 47

26 4 14 38 01

27 4 14 38

28 4 14 38

29 4 14 38

30 1 0 0

Totals 390 3687 3687
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Table A-4. RESULTS FOR EXAMPLE 1 WHEN • 0.25

Target Price I(d*,J) I(d',j)

1 34 397 233
2 19 176 130
3 18 163 123
4 13 101 89
5 12 90 82
6 10 68 68
7 10 68 68
8 7 38 48
9 6 29 41

10 6 29 41
11 5 21 34
12 5 21 34
13 5 21 34
14 5 21 34
15 4 14 27
16 4 14 27
17 4 14 27
18 3 8 21
19 3 8 21
20 3 8 21
21 3 8 21
22 3 8 21
23 3 8 21
24 3 8 21
25 3 8 21
26 2 3 14
27 2 3 14

28 2 3 14
29 2 3 14
30 1 0 0

Total s 200 1361 1364
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is the number of interceptors deployed at target J by the
Prim-Read deployment d* and

V(J) J O d ,m

I(d,J) Jo mi Sv(Z)

is the number of interceptors allotted to target J by the

proportional deployment d.

A few explanatory comments are in order before the Tables

are discussed.

1) There are both inter- and intra-Table discrepancies

arising from our rounding target prices and interceptor allo-

cations to be integers. For example, the sum of target prices

for a - 1 should be twice that for a - 1/2, which in turn should

be twice that for m - 1/4. Also, within Tables A-2 and A-4

we have

3 3

even though (A.2) implies that equality must hold in principle.

2) Except when a - 1, the constraint that av(J) be an

integer for J - 1, ... , 29 is not satisfied. What we have

done, as would be done (without any significant harm) in any

practical situation, is to round the values av(J) to the

neaxrest integer. (An alternative would be to always round

to the next higher integer, which would prevent the target

defense principle from being violated simply because of

rounding.)

•'
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3) The value q - 0.8 (recall that q Is the one-on-one

penetration probability) is possibly too high. Later we will

consider the case q a 0.2.

Perhaps the most striking features of Tables A-2, A-3 and

A-4 are the significant but systematic differences between the

Prim-Read deployments d* and the corresponding proportional

allocations d. Although a theoretical discussion of the exact

nature of these differences is deferred to Appendix B, the

following aspects are especially noteworthy.

1) The Prim-Read deployment devotes relatively more inter-

ceptor resources to defense of valuable targets and relatively

fewer to defense of less valuable targets. For example, for

a u 1 the ratio I(dN,J)/I(a,J) ranges from 1.43 for J - 1 to

0.49 when J - 29.

2) As a decreases the discrepancy between d* and

increases so that, for example, when a - 0.25 the ratios I(d*,J)/
a

I(d,J) range over the interval [0.21,1.71], as compared to

[0.49,1.431 when a a 1.

3) For a fixed value of a, the ratio I(d*,J)/I(d,J)
OL

is monotonically decreasing as J increases.

4) The value of J at which the ratios I(d*,J)/I(d,J)

pass from a greater than one to less than one is independent

of a.

To illustrate these points in the numerical sense, we
present in Table A-5 a listing of ratios 1(d*,J)/I(d,j) for the

cases a - 1, a - 0.5 and a - 0.25 treated above. The Table

fully confirms the four points Just listed.

As previously mentioned, we give in Appendix B theoretical

statements of these properties and mathematical verifications

of those statements. Here, however, we wish to discuss some

heuristic arguments for their validity.

A-9
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Table A-5. COMPARISON OF PRIM-READ AND
PROPORTIONAL DEPLOYMENTS

OL {d , /~ J) I (d*,j)/I (T,j) I(d*,J)/I (d^,J'

Target for a a I for ia 0.5 for oL a 0.25
1 1.4296 1.5385 1.7039
2 1.2334 1.2806 1.3538

3 1.2088 1.2581 1.3252

4 1 .0953 1 .1179 1.1348

5 1.0530 1.0596 1.0976

6 1 .0041 1 .0000 1.O000
7 1.0041 1.0000 1.0000

8 .8594 .8211 .7911

9 .8442 .7895 .7073

10 .8163 .7895 .7073

11 .7521 .7158 .6176

12 .7521 .7158 .6176

13 .7521 .7158 .6176
14 .7376 .6706 .6176

15 .6954 .6184 .5185

16 .6954 .6184 .5185
17 .6758 .6184 .5185

18 .6312 .5088 .3810
19 .6081 .5088 .3810

20 .5852 .5088 .3810
21 .5852 .4468 .3810
22 .5528 .4468 .3810

23 .5528 .4468 .3810

24 .5528 .4468 .3810

25 .5528 .4468 .3810

26 .5135 .3684 .2143

27 .4898 .3684 .2143
28B .4898 .3684 .2143
29 .4898 .3684 .2143
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Concerning the first (and, we believe, most important)

point, we believe that it holds as a consequence of the target
defense principle and of Theorem (5.17). Pareto optimality of

the Prim-Read deployment for attack sizes less than or equal to
±*(d*), which is the content of Theorem (5.17), means that a

Prim-Read deployment is effective at protecting against an

attack of unknown size provided that the size not exceed

i*(d*). The proportional deployment d, on the other hand, can

be shown (cf. Chapter IV for some related results) to-be optimal

against an attack of known size i*(d*) when attricking weapons

are allocated among the targets as shown in the "Price" columns

of Tables A-2, A-3 and A-4, but may not be optimal against

an attack of smaller size. The Prim-Read deployment, however,

protects against precisely that possibility (of an attack of

size less than i*(d*)), and does so by devoting more resources

to defense of the more valuable targets. That is, the Prim-

Read response to uncertainty about the size of a potential

attack is to defend the higher value targets more heavily.

To illustrate numerically, suppose that under the propor-
tional deployment d, those interceptors assigned to each target

j are deployed uniformly against the first cv(j)(-p(d*,J)) attack-

ing weapons arriving there. That is,

d(jk) - v(J)

which implies In particular that

p (,j- p(d ,J) + 1,

for J = 1, ... , 29. Suppose that a - 1 (Table A-2) and consider

an attack of size a - 211 (-p(d*,l) + p(d*,2)). Then, of course,

V(d*,a) - 211,

C) while by trial and error one can show that

A-11

"6!



(A.3) V(d,a) > 408

Similar, but more pronounced, results hold for smaller values

of a. When a " 0.5 and a a 105 (-p(d*,l) + p(d*,2)) then

V(d ,a) -15 ,

but

(A.4) V(d,a) > 211.

We also emphasize that the bounds in (A.3) and (A.4) are far
from sharp; they were obtained simply by experimental calculations.

The preceding results demonstrate rather graphically the
extent to which the Prim-Read deployment mitigates the undesira-

ble effects that could otherwise ensue when the defending side

lacks knowledge of the size of an attack.

To make the point once again, the differences between Prim-

Read and proportional deployments are consequences of the fact

that the former protect effectively against a range of attack

sizes without being optimal against any single attack size,
whereas the latter are optimal for certain attack sizes but

extremely inefficient against other, smaller attack sizes.

The remaining three points will be considered only briefly.
We do not have a really good heuristic explanation of why the

discrepancy between d* and d increases as a decreases; however,CL
the effect is not spurious, since we give a mathematical veri-

fication in Appendix B. Monotonicity of I(d*,J)/I(d,j) as aSas
function of J is not unexpected in view of the discussion of
the first point. Finally, independence of the cross-over point

from the value of a is pleasant but seems to have no clear

physical basis.

To complete this example we give in Table A-6 the results

corresponding to those in Table A-2, except that now q - 0.2.

No further comments are really necessary. Table A-7 shows

A-12
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Table A-6. RESULTS FOR EXAMPLE 1 WHEN
q = 0.2 AND I - 1

Target Price I(d*,J) I(dj)

1134 327 228
2 77 162 131

3 72 148 123
4 52 97 88

5 46 83 78
6 40 69 68
7 40 69 68

8 26 38 44
9 25 36 43

10 23 32 39
11 19 24 32
12 19 24 32
13 19 24 32

14 18 23 31
15 16 19 27
16 16 19 27

17 15 17 26
18 13 14 22
19 12 12 20

20 11 11 19
21 11 11 19
22 10 9 17
23 10 9 17

24 10 9 17
25 10 9 17
26 9 8 15

27 8 7 14
28 8 7 14
29 8 7 14
30 1 0 0.

Totals 778 1324 1322
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Table A-7. PRIM-READ INTERCEPTOR REQUIREMENTS FOR
DIFFERING PENETRATION PROBABILITIES

Penetration Probability q I(d*) for a 1

.95 41571

.90 20238

.85 13120

.80 9558

.75 7412

.70 5978

.60 4174

. so 3076

.40 2327

.30 1771

.20 1324

.10 926

.05 712

the dependence of only the total Prim-Read interceptor deployment
I(d*) - I(d*,J) on the penetration probability q. Incidentally,

j

as will be shown in Appendix B, all the observations above con-
cerning the ratios I(d*,J)/I(d,j) are entirely independent of
the value of q. However, I(d*) does depend on q as illustrated
in the Table.

Table A-7 shows that once interceptors are sufficiently
effective that q < .6, there is relatively less payoff from
furthier improvements in effectiveness. However, if q is as
high as .9, then it seems wise to pursue improvements in the
interceptors. Of course in reality any such decision must be
made In light of the costs of various alternative choices.

In our second example, which we present much more briefly
than the preceding example, we assume that target value as a
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function of population is given by the function depicted in

Figure A-2. Symbolically, we have

V(p) - 1 if p < 106
2

- ifp _10

The essential difference between the function and that used in

the first example is that this one is quadratic, whereas that

of Example 1 is linear.

41
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Figure A-2. TARGET VALUE AS A FUNCTION OF
POPULATION FOR EXAMPLE 2
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From this definition of the value function one obtains

the target values listed in Table A-8.

Table A-8. TARGET VALUES FOR EXAMPLE 2

Target Value Target Value

1 279 16 4
2 92 17 4

3 81 18 3

4 43 19 2

5 33 20 2

6 25 21 2

7 25 22 2

8 11 23 2

9 10 24 2

10 8 25 2
11 6 26 1

12 6 27 1
13 6 28 1

14 5 29 1

15 4 30 1

Given the target values listed in Table A-8, the only Prim-

Read deployment defending targets 1, ... , 29 and satisfying the
target defense principle is that corresponding to c - 1 in

the expression (A.1). In Table A-9 we present this Prim-Read

deployment. For the sake of comparability with Table A-2, we
continue to use q - 0.8 as the value of the one-on-one penetration

probability. In view of our extended discussion of Example 1

we do not feel that further comments are really required at this

point. Observe, however, that in order to satisfy the target
defense principle, targets 26, 27, 28 and 29 must also be left

undefended.

A-16
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Table A-9. RESULTS FOR EXAMPLE 2 ( 1, q -0.8)

Target Price I(d*,)1,J)

1 279 5805 4376

2 .92 1466 1443

3 81 1246 1270

4 43 545 674
5 33 381 518

6 25 260 392

7 25 260 392

8 11 79 173
9 10 68 157

10 8 48 125

11 6 29 94

12 6 2 9 94

13 6 29 94

14 5 21 78
15 4 14 63

16 4 14 63

17 4 14 63

183 8 47
19 2 3 31

20 2 3 31

21 2 3 31

22 2 3 31

23 2 3 31
*24 2 3 31

25 2 3 31

26 1 0 0

27 1 0 0
28 1 0 0
29 1 0 0

o30 1 0 0

Total s 664 10337103
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To serve as one final comparison, we present in Table
A-10 the same results as in Table A-9, except that the pene-
tration probability is lowered to 0.5.

A
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Table A-10. RESULTS FOR EXAMPLE 2 (t 1, q 0-05)

Target Price I(d*,J) I(d,j)

1 279 1870 141.1

2 92 472 465

3 81 401 410

4 43 175 217

5 33 123 167

6 25 84 126

7 25 84 126

8 11 25 56

9 10 22 51

10 8 15 40

11 6 10 30

12 6 10 30

13 6 10 30

14 5 7 25

15 4 5 20

16 4 5 20

17 4 5 20

18 3 a is
19 2 1 10

20 2 1 10

21 2 1 10

22 2 1 10

23 2 1 10

24 2 1 10

25 2 1 10

26 1 0 0

27 1 0 0

28 1 0 0

29 1 0 0

30 1 00

Totals 664 3333 3329
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COMPARISON OF PRIM-READ AND PROPORTIONAL DEPLOYMENTS

This Appendix contains mathematical formulations and veri-
fications of various relationships between Prim-R&8", deploy-

ments and corresponding proportional deployments. Most of

these relationships were observed and commented upon in the

discussion in Appendix A of the numerical results appearing in,.

Tables A-2, A-3, and A-4.

To set the stage for the results in this Appendix, let d*

denote by Prim-Read deployment with scaling factor a, given

by

(B.1) d•*(,,k) - log (-v(Jg)-k+l) lQ log q l"'0

k - l,...,cv(J) I

where J 0 is the number of initially defended targets and a is

chosen so that the target defense principle is satisfied and

so that av(J) is (or is taken to be) an integer for each
J-l,...,JO. The total interceptor requirement at target J i1

(B.2) I(d*,J) log av(J•l

a log q

Denote by da any deployment that allocates the total Prim-Read

interceptor requirement, namely,

JO
1(d*) E log UvQj)!

a log q Jul

among the targets l,...,J0 in direct proportion to their respec-

tive values. That is,
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(B.3) (d ,J) -I(d)J0
Z v(k)

k-I

Jo
Z log av(k)! I-

. v k-i
o - log q

Z v(k)
k-i

for J-1,...,Jo. It is not relevant to the results below
precisely how interceptors assigned to each target are allo-

cated among potential incoming weapons there. In order to com-

pare the deployments d* and d., we introduce the ratios r(J,x)

given by

I(dSJ)

Jo
E v(k)

k-1 log Ov(J)1v(J) Jo

E log av(k) l
ko1

whose behavior, as functions of both J and a, we will analyze

in this Appendix. We observe, incidentally, that these ratios

are independent of the one-to-one penetration probability q,

so that our results are valid for all values of q.

By way of motivation we recall the following empirical C

properties of these ratios r(J,a), as observed in the various

Tables in Appendix A:
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1) With a fixed, r(j,a) appears to be decreasing as J

increases (i.e., as target value decreases), with r(j,a)>l for

high value targets (low J) and r(J,a)<l for low value targets

(high ).

2) As a decreases, r(j,a) increases and deviates farther

from 1 provided that J be a high value target and decreases,

but still deviates farther from 1, when J corresponds to a low

value target.

3) The value of J for which

r(ja) > I > r(j+l,x)

(i.e., at which the decreasing ratios r(j,a) pass from greater

than one to less than one) appears to be nearly independent

of a.

The principal results of this Appendix, which we now pro-

ceed to develop, are confirmations of the'observed behaviors

noted above. We first verify monotonicity of the ratios

r(J,a) in J with a fixed.

(B.5) THEOREM. Assume that v(l)> ... > v(J 0 ) and let r(j,a)

be given by (B.4). Then for each fixed value of a,

(B.6) r(l,a) > r(2,a) >...> r(J0,a).

PROOF. To show that r(l,a)>r(2,a) it suffices by virtue of

(B.4) to show that

lo vl. o a4'.2 )
lO&Vf 11) ctv 2

and this expression holds by induction provided that

for each integer Z > 2. To obtain (B.7) we proceed as follows:
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l[log(2)+1)! -lo l oglog X1

k log(z+l) - log oI

S Z+i) Z [1o((+l) - log k]

k-l

>0

This completes the proof of the Theorem.

We note that if we assume only that v(1)>v(2)>... v(J0),

then the conclusion (B.6) of Theorem (B.5) must be weakened cor-

respondingly, and becomes

• ~r(l,a) >_ r(2,a) >...> r(j0,,)

where the-inequality is strict whenever v(J) > v(j+l)

The next result is not direct confirmation of any of the

properties listed above, but will be used in the process of

confirming the second property, and is also of some independent

interest.

(B.3) PROPOSITION. For each J-l,...,J, we have

(B.9) lir r(j,a) a 1

PROOF. We recall Stirling's approximation [16, p. 194]

ft ' (2•)1/2 nn+1/ 2 e-n

as n-*, and substitute into each factorial term in (B.4) to

obtain

B
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z v(k)1/

r(Jcx) ,~kil log(21r)1  + (avjj)+1/2) log av(j) - av(J)

VQ) E Z iog(27r) 1/2 + (av(k)+1/2) log civ(k) a- ~(k)J
k-i

E v(k)
kuJ. (av(j ) + 1/2) log av(J) - v(A

v(J) Jo
E [(oav(k)+l/2) log ctv(k) - cv(k)J
k-i

Jo
Z V(k) (1+ o v

-k- I1~ log 2av(J) -

V(J) k-i Lk 1 ~- log av(k) V~ J

Jo
E v(k)

k-i

Jo
Z v(k)

k-i~k log av(J)

Since

Jo oj j 0 10 c log v~k)
lrn E v (k) lo-v" E v(k) li lg;an

Sk-i -T av(TY k-i L-0-0 log a+ilogv(J

jo
w v(k). f
k-i



One interpretation of Proposition (B.8) is that for

large values of a, the Prim-Read deployment d* and the propor-

tional deployment aa do not differ greatly, at least in the

relative sense as described by the ratios r(J,a).

We can now confirm the second observed property of the

ratios r(j,c); in fact, we shall prove more.

(B.10) THEOREM. Assume that v(l)>v(Jo). Then,

a) For all sufficiently emaZZ J (i.e., for all targets

of sufficiently high value), r(J,a) is a strictly dezreasing

function of a, and therefore r(j,a) > 1 for all a.

b) For all sufficiently Zarge J (i.e., for all initially

defended targets of sufficiently low value), r(j,a) is a

strictly inoreasing function of a, and therefore r(J,a) < 1

all of a.

PROOF. We begin by noting that the second part of each con-

clusion follows from the first part together with (B.9). For

example, in a), if a-ýr(J,a) Is decreasing as a increases and

(B.9) holds, then r(J,a) > 1 for all a. The first parts of the

two statements are proved using arguments that are essentially

identical in pattern, so we can prove both parts simultaneously.

Monotonicity of a-r(J,a) is equivalent to monotonicity

in the )ame direction of -og(Ja), where

JO

z log r(av(J)+l)
k-l

and where r is Euler's gamma function given by

r(x) I tx 1 e- dt,
0
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which has the property that

r(n+l) - n1
for each integer n >_ 0. Moreover, monotonicity of a4.g(J,a) is
equivalent to monotonicity in the opposite direction of

a**h(Ja), where

(B.11) h(j,a) - - 1

JO log r(av~k)+,V•
• r. log r av<j)"+•l"

k-i

k#J

If we define

f(J,x) a log r(xv(j)+l),

then x- f(J,x) is convex by [16, Theorem 8.18] and it follows
from (B.11) that

(B.12) h(J,a) v 4 k

ky'3 f(j '0)

From (B.12) and convexity of f(j,.) the following conclusions

are immediate:

1) ash(l1c,) is strictly increasing since each of the
ratios a-f(l,av(k)/v(J))/f(l,a) is nondecreasing (by convexity
of f(l, *) and the fact that v(k)/v(1) < 1) and at least one
of these ratios is strictly increasing.

2) v-mh(Jo,a) is strictly decreasing by an inversion of the
argument Just used.

3) If a*h(J,a) is strictly increasing, so is ach(J-1,c),
whereas, if a.h(J,a) is strictly decreasing, then the same is
true of rorh(J+l,a).

B-7
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(j

The Theorem follows at once from these statements.

Theorem (B.10) confirms that as a decreases, the deviation

between the Prim-Read deployment d* and the proportional

deployment C( increases, at least for all the highest value

targets and all the lowest value targets. For numerical evi-

dence we refer the reader to Table A-5 in Appendix A.

Our final result establishes that the cross-over point

fox the ratios r(j,a) (from greater than one to less than one)

is the same for all a. Table A-5 suggests that this might be
so, but fails to illustrate the property precisely because of

rounding.

(B.13) THEOREM. Assume that v(l)>v(2)>...>v(J 0 ). Then Cý

there exists an integer j* such that

(B.14) r(J*,a) > 1 > r(j*+lc)

for all a.

We emphasize that both inequalities in (8.14) are strict.

PROOF. For each a, let j be the unique integer such that

r(j ,C1$) > 1 > r(ja+l,Q) ;

existence is clear and uniqueness follows from Theorem (B.5).

Since a-r(j,a) is a continuous function for each J it follows

that the a-)j is continuous at every point a0 for which

r(Qc,c) > 1 > r(J a+l,)a)

Therefore, if r(ja) # 1 for all J and all a, then the function

0-J6- is everywhere continuous and integer-valued and, conse-

quently, must be constant, which suffices to demonstrate (B.14).

Thus, it remains only to prove that

II (B.15) r(j,a) • 1

for all J and a. If, on the contrary, (B.15) fails for some

j and a, then by (B.4) we have that
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(B - 6) V(1) m log cav U) I

JO JO
E v(k) E log ov(k)!

k-l k-l

That is, sinrce r(n+i) - nI for each integer n. (B.16) implies

that

1 1~) lug r(av(k)+l)
Vu vkk) lo r ?TctV)T.I. kai

Consider now the functions

jo
f a log r~vj)l I v(k)

kai

and

JO
f2()- v(j) I log r(av(k)+l)

k-i

Then,

JO
ri(c&) - v(Jhi(CLv(J)+i) v(ic)

k-i

and

f'c)- v(j) v(k)*j(av(k)+i),

where *(x) d log r(x). Suppose that 'a were equal todx1

f rOa or some a; this would imply that

2a
(B.17) *J(ctv(J)+i) -v(k)ip(cv(k)+l)

Z v(k)
k-i
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However, (B.17) violates strict convexity of the function
x -I *(ax+l). Therefore (once more with the v(k) fixed), we

have fA(a) # f((a) for all a, which implies that either f() >

fA(a) for all a or f'(a) < f'(a) for all a, since these functions

are continuous. Finally, since f 1 (O) - f 2 (O) it follows that f1

and f2 can be equal for no other value of a, which completes the

proof of the Theorem.
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